論文の概要: A Scalable FPGA Architecture for Quantum Computing Simulation
- arxiv url: http://arxiv.org/abs/2407.06415v1
- Date: Mon, 8 Jul 2024 21:48:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 19:54:43.123356
- Title: A Scalable FPGA Architecture for Quantum Computing Simulation
- Title(参考訳): 量子コンピューティングシミュレーションのためのスケーラブルFPGAアーキテクチャ
- Authors: Lee A. Belfore II,
- Abstract要約: 量子コンピューティングシミュレーションは、量子回路の挙動を探索する機会を提供する。
量子回路のシミュレーションには幾何学的な時間と空間の複雑さが必要である。
高性能で並列性の高いアクセラレータを提供するために,スケーラブルなアクセラレータアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A quantum computing simulation provides the opportunity to explore the behaviors of quantum circuits, study the properties of quantum gates, and develop quantum computing algorithms. Simulating quantum circuits requires geometric time and space complexities, impacting the size of the quantum circuit that can be simulated as well as the respective time required to simulate a particular circuit. Applying the parallelism inherent in the simulation and crafting custom architectures, larger quantum circuits can be simulated. A scalable accelerator architecture is proposed to provide a high performance, highly parallel, accelerator. Among the challenges of creating a scalable architecture is managing parallelism, efficiently routing quantum state components for gate evaluation, and measurement. An example is demonstrated on an Intel Agilex field programmable gate array (FPGA).
- Abstract(参考訳): 量子コンピューティングシミュレーションは、量子回路の挙動を調べ、量子ゲートの特性を研究し、量子コンピューティングアルゴリズムを開発する機会を提供する。
量子回路をシミュレートするには幾何学的な時間と空間の複雑さが必要であり、特定の回路をシミュレートするために必要な各時間だけでなく、シミュレートできる量子回路のサイズにも影響を及ぼす。
シミュレーションとカスタムアーキテクチャに固有の並列性を適用することで、より大きな量子回路をシミュレートすることができる。
高性能で並列性の高いアクセラレータを提供するために,スケーラブルなアクセラレータアーキテクチャを提案する。
スケーラブルなアーキテクチャを構築する上での課題のひとつは、並列性の管理、ゲート評価のための量子状態コンポーネントの効率的なルーティング、測定である。
例として、Intel Agilexフィールドプログラマブルゲートアレイ(FPGA)がある。
関連論文リスト
- Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
本稿では,量子回路実行の並列化モデルを提案する。
このモデルはバックエンドに依存しない機能を利用することができ、任意のターゲットバックエンド上で並列量子回路の実行を可能にする。
論文 参考訳(メタデータ) (2024-06-05T17:16:07Z) - Quantum Tunneling: From Theory to Error-Mitigated Quantum Simulation [49.1574468325115]
本研究では,量子トンネルシミュレーションの理論的背景とハードウェア対応回路の実装について述べる。
我々は、ハードウェアのアンダーユース化問題を解決するために、ZNEとREM(エラー軽減技術)と量子チップのマルチプログラミングを使用する。
論文 参考訳(メタデータ) (2024-04-10T14:27:07Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Quantum Simulation of Dissipative Energy Transfer via Noisy Quantum
Computer [0.40964539027092917]
雑音の多いコンピュータ上でのオープン量子システムの力学をシミュレートする実用的な手法を提案する。
提案手法は,IBM-Q実機におけるゲートノイズを利用して,2量子ビットのみを用いて計算を行う。
最後に、トロッター展開を行う際の量子回路の深さの増大に対処するため、短期力学シミュレーションを拡張するために転送テンソル法(TTM)を導入した。
論文 参考訳(メタデータ) (2023-12-03T13:56:41Z) - QuDiet: A Classical Simulation Platform for Qubit-Qudit Hybrid Quantum
Systems [7.416447177941264]
textbfQuDietは、ピソンベースの高次元量子コンピューティングシミュレータである。
textbfQuDietは一般化された量子ゲートを利用する多値論理演算を提供する。
textbfQuDietは完全なqubit-quditハイブリッド量子シミュレータパッケージを提供する。
論文 参考訳(メタデータ) (2022-11-15T06:07:04Z) - TensorCircuit: a Quantum Software Framework for the NISQ Era [18.7784080447382]
Pythonで書かれたCircuitは、自動微分、ジャストインタイムコンパイル、ベクトル化並列処理、ハードウェアアクセラレーションをサポートする。
回路は、適度な深さと低次元接続で最大600量子ビットをシミュレートすることができる。
論文 参考訳(メタデータ) (2022-05-20T11:23:30Z) - Low-rank tensor decompositions of quantum circuits [14.531461873576449]
我々はMPOを用いて量子状態、量子ゲート、量子回路全体を低ランクテンソルとして表現する方法を示す。
これにより、古典コンピュータ上の複雑な量子回路の解析とシミュレーションが可能になる。
論文 参考訳(メタデータ) (2022-05-19T22:09:15Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
小型電子フォノン系のゲートベース量子シミュレーションにおける絶対的資源コストについて考察する。
我々は、弱い電子-フォノン結合と強い電子-フォノン結合の両方のためのIBM量子ハードウェアの実験を行う。
デバイスノイズは大きいが、近似回路再コンパイルを用いることで、正確な対角化に匹敵する電流量子コンピュータ上で電子フォノンダイナミクスを得る。
論文 参考訳(メタデータ) (2022-02-16T19:00:00Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
現在の世代のノイズの多い中間スケール量子コンピュータ(NISQ)は、チップサイズとエラー率に大きく制限されている。
我々は、自由フェルミオンとして知られる特定のスピンハミルトニアンをシミュレーションするために、量子回路を効率よく圧縮するために局所化回路変換を導出する。
提案した数値回路圧縮アルゴリズムは、後方安定に動作し、$mathcalO(103)$スピンを超える回路合成を可能にするスピンの数で3次スケールする。
論文 参考訳(メタデータ) (2021-08-06T19:38:03Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
量子回路をキューネットワークとしてモデル化することを提案する。
提案手法はスケーラビリティが高く,大規模量子回路のコンパイルに必要となる潜在的な速度と精度を有する。
論文 参考訳(メタデータ) (2021-06-26T10:55:52Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。