論文の概要: Iteratively Refined Image Reconstruction with Learned Attentive Regularizers
- arxiv url: http://arxiv.org/abs/2407.06608v1
- Date: Tue, 9 Jul 2024 07:22:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 18:56:02.897567
- Title: Iteratively Refined Image Reconstruction with Learned Attentive Regularizers
- Title(参考訳): 学習適応正規化器を用いた反復精細画像再構成
- Authors: Mehrsa Pourya, Sebastian Neumayer, Michael Unser,
- Abstract要約: 本稿では,ディープラーニングの力を活用した画像再構成のための正規化手法を提案する。
これは一連の凸問題の最小化に対応するためである。
解釈可能性、理論的保証、信頼性、パフォーマンスの両立を約束するバランスを提供します。
- 参考スコア(独自算出の注目度): 14.93489065234423
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a regularization scheme for image reconstruction that leverages the power of deep learning while hinging on classic sparsity-promoting models. Many deep-learning-based models are hard to interpret and cumbersome to analyze theoretically. In contrast, our scheme is interpretable because it corresponds to the minimization of a series of convex problems. For each problem in the series, a mask is generated based on the previous solution to refine the regularization strength spatially. In this way, the model becomes progressively attentive to the image structure. For the underlying update operator, we prove the existence of a fixed point. As a special case, we investigate a mask generator for which the fixed-point iterations converge to a critical point of an explicit energy functional. In our experiments, we match the performance of state-of-the-art learned variational models for the solution of inverse problems. Additionally, we offer a promising balance between interpretability, theoretical guarantees, reliability, and performance.
- Abstract(参考訳): 本稿では,古典的疎性促進モデルに頼りながら,深層学習の力を活用した画像再構成のための正規化手法を提案する。
多くのディープラーニングベースのモデルは解釈が困難で、理論的には解析が困難である。
対照的に、このスキームは一連の凸問題の最小化に対応するため解釈可能である。
シリーズの各問題に対して、前の解に基づいてマスクを生成し、空間的に正規化強度を洗練させる。
このようにして、モデルは画像構造に徐々に注意を払っていく。
基礎となる更新演算子に対しては、固定点の存在を証明します。
特別な場合として、固定点反復が明示的なエネルギー汎関数の臨界点に収束するマスク生成器について検討する。
実験では,逆問題解に対する最先端学習変分モデルの性能を比較検討した。
さらに、解釈可能性、理論的保証、信頼性、パフォーマンスの相違も有望です。
関連論文リスト
- Convergence Properties of Score-Based Models for Linear Inverse Problems Using Graduated Optimisation [44.99833362998488]
本稿では,スコアベース生成モデル(SGM)を用いて逆問題の解法を提案する。
初期値とは無関係に,高Ms画像の復元が可能であることを示す。
ソースはGitHubで公開されている。
論文 参考訳(メタデータ) (2024-04-29T13:47:59Z) - Convex Latent-Optimized Adversarial Regularizers for Imaging Inverse
Problems [8.33626757808923]
本稿では,新しいデータ駆動型パラダイムであるConvex Latent-d Adrial Regularizers (CLEAR)を紹介する。
CLEARは、ディープラーニング(DL)と変分正規化の融合を表す。
本手法は従来型のデータ駆動手法と従来型の正規化手法を一貫して上回っている。
論文 参考訳(メタデータ) (2023-09-17T12:06:04Z) - Regularized Vector Quantization for Tokenized Image Synthesis [126.96880843754066]
画像の離散表現への量子化は、統合生成モデリングにおける根本的な問題である。
決定論的量子化は、厳しいコードブックの崩壊と推論段階の誤調整に悩まされ、一方、量子化は、コードブックの利用率の低下と再構築の目的に悩まされる。
本稿では、2つの視点から正規化を適用することにより、上記の問題を効果的に緩和できる正規化ベクトル量子化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-11T15:20:54Z) - Regularization via deep generative models: an analysis point of view [8.818465117061205]
本稿では, イメージングにおける逆問題(例えば, デブロアリングやインペインティング)を, 深部生成ニューラルネットワークを用いて正則化する新しい手法を提案する。
多くの場合、我々の技術はパフォーマンスの明確な改善を実現し、より堅牢であるように思える。
論文 参考訳(メタデータ) (2021-01-21T15:04:57Z) - Counterfactual Generative Networks [59.080843365828756]
画像生成過程を直接監督せずに訓練する独立した因果機構に分解することを提案する。
適切な誘導バイアスを活用することによって、これらのメカニズムは物体の形状、物体の質感、背景を解き放つ。
その結果, 偽画像は, 元の分類タスクにおける性能の低下を伴い, 分散性が向上することが示された。
論文 参考訳(メタデータ) (2021-01-15T10:23:12Z) - Shared Prior Learning of Energy-Based Models for Image Reconstruction [69.72364451042922]
本研究では,地中真理データを含まないトレーニングに特化して設計された画像再構成のための新しい学習ベースフレームワークを提案する。
基底真理データがない場合には、損失関数をパッチベースのワッサーシュタイン関数に変更する。
共用事前学習では、上記の最適制御問題と正規化器の共用学習パラメータを同時に最適化する。
論文 参考訳(メタデータ) (2020-11-12T17:56:05Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z) - Learned convex regularizers for inverse problems [3.294199808987679]
本稿では,逆問題に対する正規化器として,データ適応型入力ニューラルネットワーク(ICNN)を学習することを提案する。
パラメータ空間における単調な誤差を反復で減少させる部分次アルゴリズムの存在を実証する。
提案した凸正則化器は, 逆問題に対する最先端のデータ駆動技術に対して, 少なくとも競争力があり, 時には優位であることを示す。
論文 参考訳(メタデータ) (2020-08-06T18:58:35Z) - Total Deep Variation: A Stable Regularizer for Inverse Problems [71.90933869570914]
本稿では,データ駆動型汎用全深度変動正規化器について紹介する。
コアでは、畳み込みニューラルネットワークが複数のスケールや連続したブロックで局所的な特徴を抽出する。
我々は多数の画像処理タスクに対して最先端の結果を得る。
論文 参考訳(メタデータ) (2020-06-15T21:54:15Z) - Total Deep Variation for Linear Inverse Problems [71.90933869570914]
本稿では,近年のアーキテクチャ設計パターンを深層学習から活用する,学習可能な汎用正規化手法を提案する。
本稿では,古典的画像復元と医用画像再構成問題に対する最先端の性能について述べる。
論文 参考訳(メタデータ) (2020-01-14T19:01:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。