論文の概要: TriQXNet: Forecasting Dst Index from Solar Wind Data Using an Interpretable Parallel Classical-Quantum Framework with Uncertainty Quantification
- arxiv url: http://arxiv.org/abs/2407.06658v1
- Date: Tue, 9 Jul 2024 08:30:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 18:46:17.668821
- Title: TriQXNet: Forecasting Dst Index from Solar Wind Data Using an Interpretable Parallel Classical-Quantum Framework with Uncertainty Quantification
- Title(参考訳): TriQXNet:不確かさを定量化した解釈可能な並列古典量子フレームワークによる太陽風データからのDst指数予測
- Authors: Md Abrar Jahin, M. F. Mridha, Zeyar Aung, Nilanjan Dey, R. Simon Sherratt,
- Abstract要約: 地磁気嵐はGPS、衛星通信、電力網などの重要なインフラを破壊する可能性がある。
本研究は、Dst予測のためのハイブリッド古典量子ニューラルネットワークであるTriQXNetを紹介する。
我々のモデルは、古典的および量子コンピューティング、共形予測、およびハイブリッドアーキテクチャ内に説明可能なAI(XAI)を統合する。
- 参考スコア(独自算出の注目度): 2.1940162009107382
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Geomagnetic storms, caused by solar wind energy transfer to Earth's magnetic field, can disrupt critical infrastructure like GPS, satellite communications, and power grids. The disturbance storm-time (Dst) index measures storm intensity. Despite advancements in empirical, physics-based, and machine-learning models using real-time solar wind data, accurately forecasting extreme geomagnetic events remains challenging due to noise and sensor failures. This research introduces TriQXNet, a novel hybrid classical-quantum neural network for Dst forecasting. Our model integrates classical and quantum computing, conformal prediction, and explainable AI (XAI) within a hybrid architecture. To ensure high-quality input data, we developed a comprehensive preprocessing pipeline that included feature selection, normalization, aggregation, and imputation. TriQXNet processes preprocessed solar wind data from NASA's ACE and NOAA's DSCOVR satellites, predicting the Dst index for the current hour and the next, providing vital advance notice to mitigate geomagnetic storm impacts. TriQXNet outperforms 13 state-of-the-art hybrid deep-learning models, achieving a root mean squared error of 9.27 nanoteslas (nT). Rigorous evaluation through 10-fold cross-validated paired t-tests confirmed its superior performance with 95% confidence. Conformal prediction techniques provide quantifiable uncertainty, which is essential for operational decisions, while XAI methods like ShapTime enhance interpretability. Comparative analysis shows TriQXNet's superior forecasting accuracy, setting a new level of expectations for geomagnetic storm prediction and highlighting the potential of classical-quantum hybrid models in space weather forecasting.
- Abstract(参考訳): 太陽風による地球の磁場へのエネルギー移動による地磁気嵐は、GPS、衛星通信、電力網といった重要なインフラを破壊する可能性がある。
暴風雨時(Dst)指数は、嵐の強度を測定する。
実時間太陽風データを用いた経験的、物理学に基づく、および機械学習モデルの進歩にもかかわらず、極端に地磁気事象を正確に予測することは、ノイズやセンサーの故障のために難しいままである。
本研究は、Dst予測のためのハイブリッド古典量子ニューラルネットワークであるTriQXNetを紹介する。
我々のモデルは、古典的および量子コンピューティング、共形予測、およびハイブリッドアーキテクチャ内に説明可能なAI(XAI)を統合する。
高品質な入力データを確保するために,特徴選択,正規化,集約,計算を含む包括的前処理パイプラインを開発した。
TriQXNetはNASAのACEとNOAAのDSCOVR衛星からの事前処理された太陽風データを処理し、現在の時間と次の時間におけるDst指数を予測する。
TriQXNetは13の最先端ハイブリッドディープラーニングモデルより優れており、根平均2乗誤差は9.27ナノテラス(nT)である。
10倍のクロスバリッドペアTテストによる厳密な評価により,95%の信頼性で優れた性能が確認された。
コンフォーマル予測技術は、運用上の決定に不可欠である定量的不確実性を提供する一方、ShapTimeのようなXAIメソッドは解釈可能性を高める。
比較分析では、TriQXNetの予測精度が優れていること、地磁気嵐予測に対する新たな期待レベルを設定し、宇宙天気予報における古典的量子ハイブリッドモデルの可能性を強調している。
関連論文リスト
- Inferring Thunderstorm Occurrence from Vertical Profiles of Convection-Permitting Simulations: Physical Insights from a Physical Deep Learning Model [0.0]
雷雨は激しい降水量、干ばつ、雷、強い風のために、社会と経済に大きな影響を及ぼす。
我々は,10の大気変数の垂直プロファイルから雷雨の発生確率を直接推定する深層ニューラルネットワークSALAMA 1Dを開発した。
SALAMA 1Dは、中央ヨーロッパで雷観測を基礎として訓練されている。
論文 参考訳(メタデータ) (2024-09-30T08:40:28Z) - Machine learning models for daily rainfall forecasting in Northern Tropical Africa using tropical wave predictors [0.0]
数値気象予報(NWP)モデルは、北熱帯アフリカにおけるより単純な気候学に基づく降水予測と比較すると性能が劣ることが多い。
本研究では,ガンマ回帰モデルと熱帯波(TW)で学習した畳み込みニューラルネットワーク(CNN)の2つの機械学習モデルを用いて,7~9月のモンスーンシーズンの日降雨を予測する。
論文 参考訳(メタデータ) (2024-08-29T08:36:22Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
我々は、TBN Granger Causalityという概念的微粒因果モデルを設計する。
次に, TBN Granger Causality を生成的に発見する TacSas という, エンドツーエンドの深部生成モデルを提案する。
気候予報のための気候指標ERA5と、極度気象警報のためのNOAAの極端気象基準でTacSasを試験する。
論文 参考訳(メタデータ) (2024-08-08T06:47:21Z) - Advances in Land Surface Model-based Forecasting: A comparative study of LSTM, Gradient Boosting, and Feedforward Neural Network Models as prognostic state emulators [4.852378895360775]
地表面プロセスのシミュレーションによる実験研究の高速化における3つの代理モデルの効率性を評価する。
以上の結果から, LSTMネットワークは, 予測期間を経た平均モデル全体の精度は高いが, 慎重に調整した場合は, 大陸の長距離予測に優れることがわかった。
論文 参考訳(メタデータ) (2024-07-23T13:26:05Z) - Forecasting Geoffective Events from Solar Wind Data and Evaluating the Most Predictive Features through Machine Learning Approaches [0.0]
本研究では,機械学習技術を利用した地磁気障害の予測について検討した。
この問題は,SYM-H地磁気活動指数の50ドルnT未満の低下を事前に1時間予測することを目的とした2値分類としてアプローチされている。
地磁気嵐の発生を適切に予測するためのニューラルネットワークの最適性能を示す。
論文 参考訳(メタデータ) (2024-03-14T20:13:26Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
我々は,地球規模の気象変動に対するAIに基づくデータ同化モデル,すなわちAdasを提案する。
我々は,アダスが地球観測を同化して高品質な分析を行い,長期にわたって安定して運用できることを実証した。
この手法を現実のシナリオに適用するのは,私たちが初めてです。
論文 参考訳(メタデータ) (2023-12-18T09:05:28Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Convolutional GRU Network for Seasonal Prediction of the El
Ni\~no-Southern Oscillation [24.35408676030181]
本稿では,エルニーニョ南部振動(ENSO)領域時間列予測問題に対して,畳み込みGated Recurrent Unit (ConvGRU) を改良したネットワークを提案する。
提案するConvGRUネットワークはエンコーダ・デコーダシーケンス・ツー・シーケンス構造を持ち,太平洋地域の歴史的SSTマップを入力として取り込んで,その後数ヶ月間,ENSO領域内で将来のSSTマップを生成する。
その結果, ConvGRU ネットワークは LIM, AF, RNN と比較して Nino 3.4 インデックスの予測可能性を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2023-06-18T00:15:45Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。