論文の概要: A Comparison of Vulnerability Feature Extraction Methods from Textual Attack Patterns
- arxiv url: http://arxiv.org/abs/2407.06753v2
- Date: Thu, 11 Jul 2024 11:31:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 12:07:17.717965
- Title: A Comparison of Vulnerability Feature Extraction Methods from Textual Attack Patterns
- Title(参考訳): テキスト攻撃パターンからの脆弱性特徴抽出法の比較
- Authors: Refat Othman, Bruno Rossi, Russo Barbara,
- Abstract要約: 本稿では,サイバーセキュリティ研究者や実践者が攻撃抽出方法を選択するのを支援することを目的とする。
TF-IDF(Term Frequency-Inverse Document Frequency)は、他の4つの手法を75%、F1スコアが64%で上回る。
- 参考スコア(独自算出の注目度): 0.22940141855172028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays, threat reports from cybersecurity vendors incorporate detailed descriptions of attacks within unstructured text. Knowing vulnerabilities that are related to these reports helps cybersecurity researchers and practitioners understand and adjust to evolving attacks and develop mitigation plans. This paper aims to aid cybersecurity researchers and practitioners in choosing attack extraction methods to enhance the monitoring and sharing of threat intelligence. In this work, we examine five feature extraction methods (TF-IDF, LSI, BERT, MiniLM, RoBERTa) and find that Term Frequency-Inverse Document Frequency (TF-IDF) outperforms the other four methods with a precision of 75\% and an F1 score of 64\%. The findings offer valuable insights to the cybersecurity community, and our research can aid cybersecurity researchers in evaluating and comparing the effectiveness of upcoming extraction methods.
- Abstract(参考訳): 今日では、サイバーセキュリティベンダーからの脅威報告には、非構造化テキストに攻撃の詳細な説明が組み込まれている。
これらの報告に関連する脆弱性を知ることは、サイバーセキュリティ研究者や実践者が、進化する攻撃を理解し、調整し、緩和計画を作成するのに役立つ。
本稿では,サイバーセキュリティ研究者や実践者が脅威情報の監視と共有を強化するための攻撃抽出方法を選択するのを支援することを目的とする。
本研究では,5つの特徴抽出法(TF-IDF,LSI,BERT,MiniLM,RoBERTa)について検討し,他の4つの手法よりも精度が75\%,F1スコアが64\%であることを示す。
この発見は、サイバーセキュリティコミュニティに貴重な洞察を与え、我々の研究は、サイバーセキュリティ研究者が今後の抽出方法の有効性を評価し、比較するのに役立つ。
関連論文リスト
- Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
近年、新しいタイプのプライバシ攻撃であるモデル反転攻撃(MIA)は、トレーニングのためのプライベートデータの機密性を抽出することを目的としている。
この重要性にもかかわらず、総合的な概要とMIAに関する深い洞察を提供する体系的な研究が欠如している。
本調査は、攻撃と防御の両方において、最新のMIA手法を要約することを目的としている。
論文 参考訳(メタデータ) (2024-11-15T08:09:28Z) - CTISum: A New Benchmark Dataset For Cyber Threat Intelligence Summarization [14.287652216484863]
CTI要約タスクのための新しいベンチマークであるCTISumを提案する。
攻撃プロセスの重要性を考慮すると,攻撃プロセスの要約の詳細なサブタスクが提案されている。
論文 参考訳(メタデータ) (2024-08-13T02:25:16Z) - EaTVul: ChatGPT-based Evasion Attack Against Software Vulnerability Detection [19.885698402507145]
敵対的な例は、ディープニューラルネットワーク内の脆弱性を悪用することができる。
本研究は,攻撃成功率100%を達成できる敵対攻撃に対する深層学習モデルの感受性を示す。
論文 参考訳(メタデータ) (2024-07-27T09:04:54Z) - A Relevance Model for Threat-Centric Ranking of Cybersecurity Vulnerabilities [0.29998889086656577]
脆弱性の追跡と更新の絶え間ないプロセスは、サイバーセキュリティの専門家にとって最大の関心事だ。
我々は、MITRE ATT&CKから派生した敵対的基準を用いた脅威の軽減に特化して、脆弱性管理のためのフレームワークを提供する。
我々の結果は、サイバー脅威のアクターが標的にし、悪用される可能性のある脆弱性の特定に向けた平均71.5%から91.3%の改善を示している。
論文 参考訳(メタデータ) (2024-06-09T23:29:12Z) - From Threat Reports to Continuous Threat Intelligence: A Comparison of
Attack Technique Extraction Methods from Textual Artifacts [11.396560798899412]
脅威レポートには、非構造化テキスト形式で書かれた攻撃戦術、テクニック、手順(TTP)の詳細な記述が含まれている。
文献ではTP抽出法が提案されているが,これらすべての方法が互いに,あるいはベースラインと比較されているわけではない。
本研究では,本研究から既存のTP抽出研究10点を同定し,本研究から5つの方法を実装した。
提案手法は,TFIDF(Term Frequency-Inverse Document Frequency)とLSI(Latent Semantic Indexing)の2つで,F1スコアが84%,83%の他の3手法よりも優れていた。
論文 参考訳(メタデータ) (2022-10-05T23:21:41Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - A Review of Adversarial Attack and Defense for Classification Methods [78.50824774203495]
本稿では,敵対的事例の生成と保護に焦点をあてる。
この論文は、多くの統計学者が、この重要かつエキサイティングな分野において、敵の事例を生成・防御することを奨励するものである。
論文 参考訳(メタデータ) (2021-11-18T22:13:43Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Automated Retrieval of ATT&CK Tactics and Techniques for Cyber Threat
Reports [5.789368942487406]
我々は,非構造化テキストから戦術,技法,手順を自動的に抽出するいくつかの分類手法を評価する。
我々は、私たちの発見に基づいて構築されたツールrcATTを紹介し、サイバー脅威レポートの自動分析をサポートするために、セキュリティコミュニティに自由に配布する。
論文 参考訳(メタデータ) (2020-04-29T16:45:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。