論文の概要: Cybersecurity Defenses: Exploration of CVE Types through Attack Descriptions
- arxiv url: http://arxiv.org/abs/2407.06759v2
- Date: Thu, 11 Jul 2024 11:28:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 12:07:17.712480
- Title: Cybersecurity Defenses: Exploration of CVE Types through Attack Descriptions
- Title(参考訳): サイバーセキュリティ防衛:攻撃記述によるCVEタイプの探索
- Authors: Refat Othman, Bruno Rossi, Barbara Russo,
- Abstract要約: VULDATは、文変換器MPNETを使用して、攻撃記述からシステムの脆弱性を識別する分類ツールである。
また,ATT&CKレポジトリから100件,CVEレポジトリから685件のアタック手法を適用した。
以上の結果より,F1スコア0.85,精度0.86,リコール0.83,F1スコア0.83,F1スコア0.85,F1スコア0.86,F1スコア0.83,F1スコア0。
- 参考スコア(独自算出の注目度): 1.0474508494260908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vulnerabilities in software security can remain undiscovered even after being exploited. Linking attacks to vulnerabilities helps experts identify and respond promptly to the incident. This paper introduces VULDAT, a classification tool using a sentence transformer MPNET to identify system vulnerabilities from attack descriptions. Our model was applied to 100 attack techniques from the ATT&CK repository and 685 issues from the CVE repository. Then, we compare the performance of VULDAT against the other eight state-of-the-art classifiers based on sentence transformers. Our findings indicate that our model achieves the best performance with F1 score of 0.85, Precision of 0.86, and Recall of 0.83. Furthermore, we found 56% of CVE reports vulnerabilities associated with an attack were identified by VULDAT, and 61% of identified vulnerabilities were in the CVE repository.
- Abstract(参考訳): ソフトウェアセキュリティの脆弱性は、悪用された後も未発見のままである。
脆弱性への攻撃のリンクは、専門家がインシデントを特定し、即座に応答するのに役立つ。
本稿では,攻撃記述からシステム脆弱性を特定するために,文変換器MPNETを用いた分類ツールであるVULDATを紹介する。
また,ATT&CKレポジトリから100件,CVEレポジトリから685件のアタック手法を適用した。
次に,VULDATの性能を文変換器に基づく他の8つの最先端分類器と比較する。
その結果,F1スコアが0.85,精度が0.86,リコールが0.83,F1スコアが0.85,F1スコアが0.83であった。
さらに,攻撃に関連する脆弱性の56%がVULDATで同定され,その61%がCVEリポジトリにあることがわかった。
関連論文リスト
- CleanVul: Automatic Function-Level Vulnerability Detection in Code Commits Using LLM Heuristics [12.053158610054911]
本稿では,Large Language Model (LLM) を用いて,VFCからの脆弱性修正変更を自動的に識別する手法を提案する。
VulSifterは大規模な調査に適用され、GitHubで127,063のリポジトリをクロールし、5,352,105のコミットを取得しました。
LLM拡張手法を用いて11,632個の関数からなる高品質なデータセットであるCleanVulを開発した。
論文 参考訳(メタデータ) (2024-11-26T09:51:55Z) - Stealthy Jailbreak Attacks on Large Language Models via Benign Data Mirroring [47.40698758003993]
そこで本研究では,ターゲットブラックボックスモデルのミラーモデルを良質なデータ蒸留により局所的に訓練することにより,悪意あるプロンプト構築を誘導するトランスファー攻撃法を提案する。
提案手法は最大攻撃成功率92%, バランス値80%を達成し, GPT-3.5 Turboに対して平均1.5のジェイルブレイククエリが検出された。
論文 参考訳(メタデータ) (2024-10-28T14:48:05Z) - LLM-Enhanced Static Analysis for Precise Identification of Vulnerable OSS Versions [12.706661324384319]
オープンソースソフトウェア(OSS)は、そのコラボレーティブな開発モデルとコスト効果の性質から、人気が高まっている。
開発プロジェクトにおける特定のソフトウェアバージョンの採用は、これらのバージョンが脆弱性をもたらす場合にセキュリティリスクをもたらす可能性がある。
脆弱性のあるバージョンを識別する現在の方法は、通常、事前に定義されたルールで静的解析を使用して、脆弱性パッチに関わるコードを分析してトレースする。
本稿では,C/C++で記述されたOSSの脆弱なバージョンを特定するために,Vercationを提案する。
論文 参考訳(メタデータ) (2024-08-14T06:43:06Z) - VulCatch: Enhancing Binary Vulnerability Detection through CodeT5 Decompilation and KAN Advanced Feature Extraction [2.2602594453321063]
VulCatchはバイナリレベルの脆弱性検出フレームワークである。
生のバイナリコードをコードT5を使って擬似コードに変換する。
高い検出精度(98.88%)と精度(97.92%)を達成するために、Word2vec、Inception Blocks、BiLSTM Attention、Residual接続を使用している。
論文 参考訳(メタデータ) (2024-08-13T19:46:50Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Unveiling Hidden Links Between Unseen Security Entities [3.7138962865789353]
VulnScopperは、知識グラフ(KG)と自然言語処理(NLP)を組み合わせたマルチモーダル表現学習を利用した革新的なアプローチである。
我々は、National Vulnerability Database(NVD)とRed Hat CVEデータベースの2つの主要なセキュリティデータセットでVulnScopperを評価した。
VulnScopperは既存の手法よりも優れており、CVEをCWE(Common Vulnerabilities and Exposures)、CPE(Common Platform Languageions)にリンクする際の78%のHits@10精度を実現している。
論文 参考訳(メタデータ) (2024-03-04T13:14:39Z) - Exploiting Library Vulnerability via Migration Based Automating Test
Generation [16.39796265296833]
ソフトウェア開発において、開発者は既存の機能を実装するのを避けるためにサードパーティのライブラリを幅広く利用する。
脆弱性のエクスプロイトは、公開後に脆弱性を再現するためのコードスニペットとして、豊富な脆弱性関連情報を含んでいる。
本研究は、開発者が依存関係を更新するかどうかを判断する基盤として脆弱性エクスプロイトテストを提供するVESTAと呼ばれる、脆弱性エクスプロイトに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T06:46:45Z) - Data-Free Hard-Label Robustness Stealing Attack [67.41281050467889]
本稿では,Data-Free Hard-Label Robustness Stealing(DFHL-RS)攻撃について紹介する。
ターゲットモデルのハードラベルをクエリするだけで、モデル精度とロバスト性の両方を盗むことができる。
本手法は,AutoAttackに対して77.86%,頑健な39.51%の精度を実現する。
論文 参考訳(メタデータ) (2023-12-10T16:14:02Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Adversarial Training with Rectified Rejection [114.83821848791206]
本稿では,信頼度(T-Con)を確実性オラクルとして利用し,信頼度を補正してT-Conを予測することを提案する。
軽度の条件下では、正当性(R-Con)拒絶器と信頼性(R-Con)拒絶器を結合して、不正に分類された入力と正しく分類された入力を区別できることを示す。
論文 参考訳(メタデータ) (2021-05-31T08:24:53Z) - (De)Randomized Smoothing for Certifiable Defense against Patch Attacks [136.79415677706612]
我々は、所定の画像とパッチ攻撃サイズを保証する、パッチ攻撃に対する認証可能な防御を導入する。
本手法はランダム化スムースなロバスト性スキームの幅広いクラスに関係している。
その結果,CIFAR-10およびImageNetに対するパッチ攻撃に対する認証済みの防御技術が確立した。
論文 参考訳(メタデータ) (2020-02-25T08:39:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。