論文の概要: Trust and Resilience in Federated Learning Through Smart Contracts Enabled Decentralized Systems
- arxiv url: http://arxiv.org/abs/2407.06862v1
- Date: Tue, 9 Jul 2024 13:50:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 17:57:30.799493
- Title: Trust and Resilience in Federated Learning Through Smart Contracts Enabled Decentralized Systems
- Title(参考訳): 分散システムを実現するスマートコントラクトによるフェデレーション学習における信頼とレジリエンス
- Authors: Lorenzo Cassano, Jacopo D'Abramo, Siraj Munir, Stefano Ferretti,
- Abstract要約: 本稿では,信頼の確保と信頼性向上を目的とした分散型アーキテクチャを基盤とした,連邦学習(FL)システムについて検討する。
このシステムは、FLコラボレータが(暗号化された)モデルのパラメータをIPFS(Inter-Planetary File System)にアップロードし、その動作を追跡するために専用のスマートコントラクトと対話するという考え方に基づいている。
- 参考スコア(独自算出の注目度): 1.9874264019909984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a study of a Federated Learning (FL) system, based on the use of decentralized architectures to ensure trust and increase reliability. The system is based on the idea that the FL collaborators upload the (ciphered) model parameters on the Inter-Planetary File System (IPFS) and interact with a dedicated smart contract to track their behavior. Thank to this smart contract, the phases of parameter updates are managed efficiently, thereby strengthening data security. We have carried out an experimental study that exploits two different methods of weight aggregation, i.e., a classic averaging scheme and a federated proximal aggregation. The results confirm the feasibility of the proposal.
- Abstract(参考訳): 本稿では,信頼性の確保と信頼性向上を目的とした分散型アーキテクチャを用いた,連邦学習(FL)システムについて検討する。
このシステムは、FLコラボレータが(暗号化された)モデルのパラメータをIPFS(Inter-Planetary File System)にアップロードし、その動作を追跡するために専用のスマートコントラクトと対話するという考え方に基づいている。
このスマートコントラクトのおかげで、パラメータ更新のフェーズは効率的に管理され、データセキュリティが強化される。
我々は,古典的平均化法と連合的近位アグリゲーションという,2つの異なるウェイトアグリゲーション手法を利用する実験を行った。
結果は提案の実現可能性を確認した。
関連論文リスト
- When Swarm Learning meets energy series data: A decentralized collaborative learning design based on blockchain [10.099134773737939]
機械学習モデルは、将来のエネルギー生産または消費を予測する機能を提供する。
しかし、特定のエネルギーセクター内の法と政策の制約は、様々な情報源のデータを利用する際に技術的ハードルをもたらす。
本稿では,集中型サーバをブロックチェーンベースの分散ネットワークに置き換えるSwarm Learningスキームを提案する。
論文 参考訳(メタデータ) (2024-06-07T08:42:26Z) - Enhancing Scalability and Reliability in Semi-Decentralized Federated
Learning With Blockchain: Trust Penalization and Asynchronous Functionality [0.0]
本論文は, 信頼金化機構を通じて参加ノードの信頼性を高めることに焦点を当てている。
提案システムは、データのプライバシーを損なうことなく、協調的な機械学習のための公正でセキュアで透明な環境を構築することを目的としている。
論文 参考訳(メタデータ) (2023-10-30T06:05:50Z) - Enabling Quartile-based Estimated-Mean Gradient Aggregation As Baseline
for Federated Image Classifications [5.5099914877576985]
Federated Learning(FL)は、機密データを保護し、モデルパフォーマンスを改善しながら、分散コラボレーションを可能にすることによって、ディープニューラルネットワークのトレーニング方法に革命をもたらした。
本稿では,これらの課題に対処するだけでなく,FLシステムにおける高度な集約技術に対して$mathsfbaseline$として基本的な参照ポイントを提供する,Estimated Mean Aggregation (EMA) という革新的なソリューションを紹介する。
論文 参考訳(メタデータ) (2023-09-21T17:17:28Z) - Conformal Prediction for Federated Uncertainty Quantification Under
Label Shift [57.54977668978613]
Federated Learning(FL)は、多くのクライアントが協力してモデルをトレーニングする機械学習フレームワークである。
我々は、量子回帰に基づく新しいコンフォメーション予測法を開発し、プライバシー制約を考慮した。
論文 参考訳(メタデータ) (2023-06-08T11:54:58Z) - Deep Equilibrium Models Meet Federated Learning [71.57324258813675]
本研究では,従来の深層学習ネットワークの代わりにDeep Equilibrium(DEQ)モデルを用いて,フェデレートラーニング(FL)問題について検討する。
我々は、DECモデルをフェデレート学習フレームワークに組み込むことで、FLのいくつかのオープンな問題に自然に対処できると主張している。
我々の知る限りでは、この研究は、DECモデルとフェデレーションラーニングの関連性を確立する最初のものである。
論文 参考訳(メタデータ) (2023-05-29T22:51:40Z) - Reliable Federated Disentangling Network for Non-IID Domain Feature [62.73267904147804]
本稿では、RFedDisと呼ばれる新しい信頼性のあるフェデレーション・ディエンタングリング・ネットワークを提案する。
我々の知る限り、提案するRFedDisは、明らかな不確実性と特徴の混在に基づくFLアプローチを開発する最初の試みである。
提案するRFedDisは,他の最先端FL手法と比較して信頼性の高い優れた性能を提供する。
論文 参考訳(メタデータ) (2023-01-30T11:46:34Z) - Federated Stochastic Gradient Descent Begets Self-Induced Momentum [151.4322255230084]
Federated Learning(FL)は、モバイルエッジシステムに適用可能な、新興の機械学習手法である。
このような条件下での勾配降下(SGD)への走行は,大域的な集約プロセスに運動量的な項を加えるとみなすことができる。
論文 参考訳(メタデータ) (2022-02-17T02:01:37Z) - Blockchain-based Trustworthy Federated Learning Architecture [16.062545221270337]
ブロックチェーンベースの信頼できるフェデレーション学習アーキテクチャを提案する。
まず、説明責任を実現するために、スマートコントラクトベースのデータモデル証明レジストリを設計する。
また、トレーニングデータの公平性を高めるために、重み付き公正データサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-16T06:13:58Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - Stochastic-Sign SGD for Federated Learning with Theoretical Guarantees [49.91477656517431]
量子化に基づく解法は、フェデレートラーニング(FL)において広く採用されている。
上記のプロパティをすべて享受する既存のメソッドはありません。
本稿では,SIGNSGDに基づく直感的かつ理論的に簡易な手法を提案し,そのギャップを埋める。
論文 参考訳(メタデータ) (2020-02-25T15:12:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。