論文の概要: RAG vs. Long Context: Examining Frontier Large Language Models for Environmental Review Document Comprehension
- arxiv url: http://arxiv.org/abs/2407.07321v1
- Date: Wed, 10 Jul 2024 02:33:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 18:11:16.234565
- Title: RAG vs. Long Context: Examining Frontier Large Language Models for Environmental Review Document Comprehension
- Title(参考訳): RAG vs. ロングコンテキスト:環境レビュー文書理解のためのフロンティア大言語モデルの検討
- Authors: Hung Phan, Anurag Acharya, Sarthak Chaturvedi, Shivam Sharma, Mike Parker, Dan Nally, Ali Jannesari, Karl Pazdernik, Mahantesh Halappanavar, Sai Munikoti, Sameera Horawalavithana,
- Abstract要約: 大規模言語モデル(LLM)は、様々な領域にわたる多くの研究問題に適用されている。
NEPA文書における法律・技術・コンプライアンス関連情報のニュアンスを理解するためのLCMの能力を測定する。
我々は,LLM とRAG を駆動するモデルの性能を,異なるタイプの質問に対処する上で比較した。
- 参考スコア(独自算出の注目度): 10.167469197083129
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have been applied to many research problems across various domains. One of the applications of LLMs is providing question-answering systems that cater to users from different fields. The effectiveness of LLM-based question-answering systems has already been established at an acceptable level for users posing questions in popular and public domains such as trivia and literature. However, it has not often been established in niche domains that traditionally require specialized expertise. To this end, we construct the NEPAQuAD1.0 benchmark to evaluate the performance of three frontier LLMs -- Claude Sonnet, Gemini, and GPT-4 -- when answering questions originating from Environmental Impact Statements prepared by U.S. federal government agencies in accordance with the National Environmental Environmental Act (NEPA). We specifically measure the ability of LLMs to understand the nuances of legal, technical, and compliance-related information present in NEPA documents in different contextual scenarios. For example, we test the LLMs' internal prior NEPA knowledge by providing questions without any context, as well as assess how LLMs synthesize the contextual information present in long NEPA documents to facilitate the question/answering task. We compare the performance of the long context LLMs and RAG powered models in handling different types of questions (e.g., problem-solving, divergent). Our results suggest that RAG powered models significantly outperform the long context models in the answer accuracy regardless of the choice of the frontier LLM. Our further analysis reveals that many models perform better answering closed questions than divergent and problem-solving questions.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な領域にわたる多くの研究問題に適用されている。
LLMsの応用の1つは、異なる分野のユーザーを対象にした質問応答システムを提供することである。
LLMに基づく質問応答システムの有効性は、トリビアや文学などの大衆や公共の領域で質問を発するユーザに対して、すでに許容できるレベルに確立されている。
しかし、伝統的に専門的な専門知識を必要とするニッチなドメインでは確立されていないことが多い。
この目的のために、米国連邦政府が国立環境環境法(NEPA)に従って作成した環境影響評価書から発せられる質問に答える際、NEPAQuAD1.0ベンチマークを構築し、3つのフロンティアLCM(Claude Sonnet, Gemini, GPT-4)の性能を評価する。
NEPA文書に存在する法律・技術・コンプライアンス関連情報のニュアンスを、異なる状況下で理解するLLMの能力を具体的に測定する。
例えば、LLMの内部的なNAEPA知識を文脈のない質問を提供することでテストし、LLMが長いNAEPA文書に存在するコンテキスト情報をどのように合成し、質問/回答作業を容易にするかを評価する。
本研究では,LLM とRAG を用いた様々な質問(例えば,問題解決,発散)の処理において,LLM とRAG を併用したモデルの性能を比較した。
以上の結果から, RAG を用いたモデルでは,フロンティア LLM の選択によらず, 解答精度において, 長い文脈モデルよりも有意に優れていたことが示唆された。
さらに分析した結果,多くのモデルでは,解答問題や解答問題よりもクローズドな解答の方が優れていることがわかった。
関連論文リスト
- Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation [55.21013307734612]
AoPS-Instructは60,000以上の高品質QAペアのデータセットである。
LiveAoPSBenchは、最新のフォーラムデータから派生したタイムスタンプによる進化的評価セットである。
我々の研究は、高度な数学推論のための大規模で高品質なデータセットの作成と維持にスケーラブルなアプローチを提示している。
論文 参考訳(メタデータ) (2025-01-24T06:39:38Z) - Knowledge Graphs, Large Language Models, and Hallucinations: An NLP Perspective [5.769786334333616]
大規模言語モデル(LLM)は、自動テキスト生成や質問応答などを含む自然言語処理(NLP)ベースのアプリケーションに革命をもたらした。
幻覚では、モデルがもっともらしい音を出すが、実際には正しくない反応を生成する。
本稿では,現状のデータセットやベンチマーク,知識統合や幻覚評価の手法など,これらのオープンな課題について論じる。
論文 参考訳(メタデータ) (2024-11-21T16:09:05Z) - Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts [50.06633829833144]
大規模言語モデル(LLM)は、様々なNLPタスクを実行するのに効果的であるが、広範囲の現実世界の知識を必要とするタスクを扱うのに苦労する。
我々は,関連する疑問に答えるために,長期的事実の知識を必要とするベンチマークを提案する。
実験の結果,LLMだけでこれらの疑問に答えるのに苦労していることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-10T15:10:20Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
大規模言語モデル(LLM)は、言語理解と生成において革命的な能力を示している。
Retrieval-Augmented Generation (RAG)は、信頼性と最新の外部知識を提供する。
RA-LLMは、モデルの内部知識に頼るのではなく、外部および権威的な知識ベースを活用するために登場した。
論文 参考訳(メタデータ) (2024-05-10T02:48:45Z) - Can LLMs Grade Short-Answer Reading Comprehension Questions : An Empirical Study with a Novel Dataset [0.0]
本稿では,Large Language Models (LLMs) の最新のバージョンが,形式的アセスメントのための短解問題に使用される可能性について検討する。
ガーナで150人以上の学生が実施した一連の読解評価から抽出した,短い回答読解質問の新しいデータセットを紹介した。
本論文は, 有能なヒトラッカーと比較して, 生成性LLMの児童短解反応の各種構成がいかに良好かを実証的に評価した。
論文 参考訳(メタデータ) (2023-10-26T17:05:40Z) - A Comprehensive Evaluation of Large Language Models on Legal Judgment
Prediction [60.70089334782383]
大規模言語モデル(LLM)は、ドメイン固有のアプリケーションに大きな可能性を示している。
GPT-4の法律評価をめぐる近年の論争は、現実の法的タスクにおけるパフォーマンスに関する疑問を提起している。
我々は,LLMに基づく実践的ベースラインソリューションを設計し,法的判断予測の課題を検証した。
論文 参考訳(メタデータ) (2023-10-18T07:38:04Z) - NuclearQA: A Human-Made Benchmark for Language Models for the Nuclear
Domain [0.0]
NuclearQAは、核領域における言語モデルを評価するための100の質問の人為的なベンチマークである。
さまざまな種類の質問が混ざり合わさって、我々のベンチマークが核領域のモデルを評価することをユニークなものにしていることを示す。
論文 参考訳(メタデータ) (2023-10-17T01:27:20Z) - FreshLLMs: Refreshing Large Language Models with Search Engine
Augmentation [92.43001160060376]
本研究では,現在の世界知識をテストする質問に答える文脈において,大規模言語モデル(LLM)の事実性について検討する。
多様な質問や回答のタイプを含む新しい動的QAベンチマークであるFreshQAを紹介する。
我々は,2モード評価法により,閉じたLLMとオープンソースのLLMの多種多様な配列をベンチマークし,その正しさと幻覚の両面を計測する。
これらの結果に触発されたFreshPromptは、FreshQA上でのLLMの性能を大幅に向上させる単純な数ショットプロンプトである。
論文 参考訳(メタデータ) (2023-10-05T00:04:12Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
大規模言語モデル(LLM)は,その知識に対する信頼度が低く,内部知識と外部知識の衝突をうまく扱えないことを示す。
検索の強化は、LLMの知識境界に対する認識を高める効果的なアプローチであることが証明されている。
本稿では,文書を動的に活用するための簡易な手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T16:46:10Z) - When Giant Language Brains Just Aren't Enough! Domain Pizzazz with
Knowledge Sparkle Dust [15.484175299150904]
本稿では,大規模言語モデルの実践的ユースケースへの適応におけるギャップを埋めることを目的とした経験的分析を提案する。
本研究は, 推論の課題によるケーススタディとして, 保険の質問応答(QA)タスクを選択する。
本課題に基づいて,保険政策ルールブックやDBPediaから抽出した付加的な知識により,LLMに依存した新たなモデルを設計する。
論文 参考訳(メタデータ) (2023-05-12T03:49:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。