論文の概要: Interpretable Differential Diagnosis with Dual-Inference Large Language Models
- arxiv url: http://arxiv.org/abs/2407.07330v1
- Date: Wed, 10 Jul 2024 02:58:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 18:01:18.569919
- Title: Interpretable Differential Diagnosis with Dual-Inference Large Language Models
- Title(参考訳): Dual-Inference Large Language Modelを用いた解釈可能な微分診断
- Authors: Shuang Zhou, Sirui Ding, Jiashuo Wang, Mingquan Lin, Genevieve B. Melton, Rui Zhang,
- Abstract要約: 大規模言語モデル(LLM)は強力な言語処理能力を持つ。
570の公開臨床ノートに専門家による解釈を付加した新しいDDxデータセットを開発した。
本稿では,LLMが双方向の解釈を行うことを可能にする新しいフレームワークであるDual-Infを提案する。
- 参考スコア(独自算出の注目度): 9.620576582805713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Methodological advancements to automate the generation of differential diagnosis (DDx) to predict a list of potential diseases as differentials given patients' symptom descriptions are critical to clinical reasoning and applications such as decision support. However, providing reasoning or interpretation for these differential diagnoses is more meaningful. Fortunately, large language models (LLMs) possess powerful language processing abilities and have been proven effective in various related tasks. Motivated by this potential, we investigate the use of LLMs for interpretable DDx. First, we develop a new DDx dataset with expert-derived interpretation on 570 public clinical notes. Second, we propose a novel framework, named Dual-Inf, that enables LLMs to conduct bidirectional inference for interpretation. Both human and automated evaluation demonstrate the effectiveness of Dual-Inf in predicting differentials and diagnosis explanations. Specifically, the performance improvement of Dual-Inf over the baseline methods exceeds 32% w.r.t. BERTScore in DDx interpretation. Furthermore, experiments verify that Dual-Inf (1) makes fewer errors in interpretation, (2) has great generalizability, (3) is promising for rare disease diagnosis and explanation.
- Abstract(参考訳): 患者が症状を記述した場合の鑑別疾患のリストを予測するための鑑別診断(DDx)の自動生成の手法は、臨床推論や意思決定支援などの応用に不可欠である。
しかし、これらの差分診断に対する推論や解釈を提供することはより有意義である。
幸いなことに、大きな言語モデル(LLM)は強力な言語処理能力を有しており、様々な関連するタスクに有効であることが証明されている。
本研究の目的は, DDx の解釈に LLM を用いることである。
まず,570の公開臨床ノートに専門家由来の解釈を付加した新しいDDxデータセットを開発した。
第二に、LLMが解釈のために双方向の推論を行うことを可能にする、Dual-Infという新しいフレームワークを提案する。
人間と自動評価は、差分や診断説明の予測におけるDual-Infの有効性を示す。
具体的には、Dual-Infのベースライン法に対する性能改善はDDx解釈におけるBERTScoreの32%を超えている。
さらに、Dual-Inf (1)は解釈の誤りを少なくし、(2)大きな一般化性を持ち、(3)稀な疾患の診断と説明を約束する実験も行われた。
関連論文リスト
- Script-centric behavior understanding for assisted autism spectrum disorder diagnosis [6.198128116862245]
本研究は,コンピュータビジョン技術と大規模言語モデル(LLM)を用いて,自閉症スペクトラム障害(ASD)を自動的に検出することに焦点を当てる。
我々のパイプラインは、動画コンテンツを文字の振る舞いを記述したスクリプトに変換し、大きな言語モデルの一般化性を活用してゼロショットまたは少数ショットでSDを検出する。
平均年齢24か月の小児におけるASDの診断精度は92.00%であり,教師あり学習法の性能は3.58%以上である。
論文 参考訳(メタデータ) (2024-11-14T13:07:19Z) - Mitigating Hallucinations of Large Language Models in Medical Information Extraction via Contrastive Decoding [92.32881381717594]
医療情報抽出タスクにおける幻覚の問題を解決するために,ALCD(ALternate Contrastive Decoding)を導入する。
ALCDは, 従来の復号法に比べて幻覚の解消に有意な改善が見られた。
論文 参考訳(メタデータ) (2024-10-21T07:19:19Z) - A Methodology for Explainable Large Language Models with Integrated Gradients and Linguistic Analysis in Text Classification [2.556395214262035]
アルツハイマー病(AD)のような発声に影響を及ぼす神経疾患は、患者と介護者の生活に大きな影響を及ぼす。
近年のLarge Language Model (LLM) アーキテクチャの進歩は、自然発声による神経疾患の代表的特徴を識別する多くのツールを開発した。
本稿では,ADに代表される語彙成分を識別できるSLIME法を提案する。
論文 参考訳(メタデータ) (2024-09-30T21:45:02Z) - Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
アルツハイマー病(AD)の検出は、機械学習の分類モデルを使用する有望な研究領域として浮上している。
我々は、AD検出において、クラス内変異が重要な課題であると考え、ADを持つ個人は認知障害のスペクトルを示す。
本稿では,ソフトターゲット蒸留 (SoTD) とインスタンスレベルの再分散 (InRe) の2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-22T02:06:05Z) - Profiling Patient Transcript Using Large Language Model Reasoning Augmentation for Alzheimer's Disease Detection [4.961581278723015]
アルツハイマー病(AD)は認知症の主要な原因であり、徐々に音声や言語能力の低下が特徴である。
近年の深層学習は自発音声によるAD自動検出を容易にする。
各発話中のテキストパターンを,患者の言語的特徴をグローバルに把握せずに直接モデル化する。
論文 参考訳(メタデータ) (2024-09-19T07:58:07Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
本稿では,大規模言語モデルと特定の診断規則との整合性を考慮したルールアラインフレームワークを提案する。
患者と医師間の規則に基づくコミュニケーションを含む医療対話データセットを開発した。
実験の結果,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-08-22T17:44:40Z) - WellDunn: On the Robustness and Explainability of Language Models and Large Language Models in Identifying Wellness Dimensions [46.60244609728416]
言語モデル (LMs) は, 予後不良のリスクが高まれば, 臨床実習におけるモデルの実用性に対するリトマステストにはならない可能性がある, メンタルヘルスの分野では, 言語モデル (LMs) が提案されている。
ウェルネス次元(WD)の同定におけるLMの堅牢性と説明性に着目した評価設計を提案する。
LM/LLMの4つの驚くべき結果が明らかになった。
論文 参考訳(メタデータ) (2024-06-17T19:50:40Z) - Conversational Disease Diagnosis via External Planner-Controlled Large Language Models [18.93345199841588]
本研究は,医師のエミュレートによる計画能力の向上を目的としたLCMに基づく診断システムを提案する。
実際の患者電子カルテデータを利用して,仮想患者と医師とのシミュレーション対話を構築した。
論文 参考訳(メタデータ) (2024-04-04T06:16:35Z) - Towards Reducing Diagnostic Errors with Interpretable Risk Prediction [18.474645862061426]
特定診断のリスクの増大または低下を示す患者EHRデータ中の証拠片をLCMを用いて同定する方法を提案する。
私たちの究極の目標は、証拠へのアクセスを増やし、診断エラーを減らすことです。
論文 参考訳(メタデータ) (2024-02-15T17:05:48Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
より単純な教師付き学習信号と自己教師付き学習信号で訓練した生成的アプローチが,現在のベンチマークにおいて優れた結果が得られることを示す。
The proposed Transformer-based generative network, named DDxT, autoregressive produce a set of possible pathology,, i. DDx, and predicts the real pathology using a neural network。
論文 参考訳(メタデータ) (2023-12-02T22:57:25Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。