論文の概要: A deep graph model for the signed interaction prediction in biological network
- arxiv url: http://arxiv.org/abs/2407.07357v1
- Date: Wed, 10 Jul 2024 04:28:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 17:51:32.157334
- Title: A deep graph model for the signed interaction prediction in biological network
- Title(参考訳): 生体ネットワークにおけるサイン付き相互作用予測のためのディープグラフモデル
- Authors: Shuyi Jin, Mengji Zhang, Meijie Wang, Lun Yu,
- Abstract要約: 医薬品研究において、医薬品の再利用戦略は、研究開発コストを削減しつつ、新しい治療法の開発を加速させる。
ディープグラフモデルは、複雑な生物学的ネットワークのマッピングにおいて、その精度に欠かせないものとなっている。
本研究は, グラフ畳み込みネットワークとテンソル分解を利用して, 署名された化学・遺伝子相互作用を効果的に予測する高度なグラフモデルを提案する。
- 参考スコア(独自算出の注目度): 1.03121181235382
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In pharmaceutical research, the strategy of drug repurposing accelerates the development of new therapies while reducing R&D costs. Network pharmacology lays the theoretical groundwork for identifying new drug indications, and deep graph models have become essential for their precision in mapping complex biological networks. Our study introduces an advanced graph model that utilizes graph convolutional networks and tensor decomposition to effectively predict signed chemical-gene interactions. This model demonstrates superior predictive performance, especially in handling the polar relations in biological networks. Our research opens new avenues for drug discovery and repurposing, especially in understanding the mechanism of actions of drugs.
- Abstract(参考訳): 医薬品研究において、医薬品の再利用戦略は、研究開発コストを削減しつつ、新しい治療法の開発を加速させる。
ネットワークの薬理学は、新しい薬物の表示を識別するための理論的基礎を築き、深部グラフモデルは複雑な生物学的ネットワークのマッピングに欠かせないものとなっている。
本研究は, グラフ畳み込みネットワークとテンソル分解を利用して, 署名された化学・遺伝子相互作用を効果的に予測する高度なグラフモデルを提案する。
このモデルは、特に生物学的ネットワークにおける極性関係を扱う際に、優れた予測性能を示す。
我々の研究は、薬物の発見と再資源化のための新しい道を開き、特に薬物の作用のメカニズムを理解することを目的としている。
関連論文リスト
- Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
本稿では,新興医薬品の相互作用を効果的に予測できるグラフニューラルネットワーク(GNN)であるEmerGNNを提案する。
EmerGNNは、薬物ペア間の経路を抽出し、ある薬物から他の薬物へ情報を伝達し、関連する生物学的概念を経路に組み込むことで、薬物のペアワイズ表現を学習する。
全体として、EmerGNNは、新興薬物の相互作用を予測する既存のアプローチよりも精度が高く、バイオメディカルネットワーク上で最も関連性の高い情報を特定できる。
論文 参考訳(メタデータ) (2023-11-15T06:34:00Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - A Deep Learning Approach to the Prediction of Drug Side-Effects on
Molecular Graphs [2.4087148947930634]
グラフニューラルネットワークを用いて薬物副作用を予測する手法を開発した。
私たちは、自由にアクセス可能で、確立されたデータソースからデータセットを構築します。
その結果,本手法は,多くのパラメータや指標の下で,分類能力の向上を図っている。
論文 参考訳(メタデータ) (2022-11-30T10:12:41Z) - Predicting Biomedical Interactions with Probabilistic Model Selection
for Graph Neural Networks [5.156812030122437]
現在の生物学的ネットワークは、ノイズ、スパース、不完全であり、そのような相互作用の実験的同定には時間と費用がかかる。
ディープグラフニューラルネットワークは、グラフ構造データモデリングの有効性を示し、バイオメディカル相互作用予測において優れた性能を達成した。
提案手法により,グラフ畳み込みネットワークは,その深度を動的に適応し,対話数の増加に対応することができる。
論文 参考訳(メタデータ) (2022-11-22T20:44:28Z) - Interpreting the Mechanism of Synergism for Drug Combinations Using
Attention-Based Hierarchical Graph Pooling [10.898133007285638]
我々は、基礎となる根本的治療目標と相乗効果(MoS)のメカニズムを明らかにする解釈可能なグラフニューラルネットワーク(GNN)を開発した。
提案したGNNモデルは、検出された重要なサブ分子ネットワークに基づいて、薬物結合の相乗効果を予測し、解釈する体系的な方法を提供する。
論文 参考訳(メタデータ) (2022-09-19T11:18:45Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
脳機能ネットワーク上のグラフ表現学習技術は、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を容易にする。
本稿では,脳機能ネットワークからグラフレベル表現を抽出する階層型グラフ表現学習モデルを提案する。
また、モデルの性能をさらに向上させるために、機能的脳ネットワークデータをコントラスト学習のために拡張する新たな戦略を提案する。
論文 参考訳(メタデータ) (2022-07-14T20:03:52Z) - Hierarchical Graph Representation Learning for the Prediction of
Drug-Target Binding Affinity [7.023929372010717]
本稿では,薬物結合親和性予測,すなわちHGRL-DTAのための新しい階層グラフ表現学習モデルを提案する。
本稿では,グローバルレベルの親和性グラフと局所レベルの分子グラフから得られた階層的表現を統合するためのメッセージブロードキャスティング機構を採用し,また,類似性に基づく埋め込みマップを設計し,未知の薬物や標的に対する表現の推論というコールドスタート問題を解決する。
論文 参考訳(メタデータ) (2022-03-22T04:50:16Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
本稿では,3方向トランスフォーマーアーキテクチャを用いて分子間情報をモデル化する手法を提案する。
分子間グラフ変換器(IGT)は、それぞれ、結合活性と結合ポーズ予測の2番目のベストに対して、最先端のアプローチを9.1%と20.5%で上回っている。
IGTはSARS-CoV-2に対して有望な薬物スクリーニング能力を示す。
論文 参考訳(メタデータ) (2021-10-14T13:28:02Z) - Interpretable Drug Synergy Prediction with Graph Neural Networks for
Human-AI Collaboration in Healthcare [23.151336811933938]
本研究は,遺伝子と薬物の結合予測における遺伝子と薬物の制御関係を組み込むディープグラフニューラルネットワーク(IDSP)を提案する。
idspは遺伝子と薬物ノードの関係に基づいてエッジの重みを自動的に多層パーセプトロン(mlp)で学習し、インダクティブな方法で情報を集約する。
46種類のコアがんシグナル伝達経路の遺伝子と、NCIアルマナックの薬物併用スクリーニングデータからの薬物併用によるシグナルネットワーク上でIDWSPをテストします。
論文 参考訳(メタデータ) (2021-05-14T22:20:29Z) - Graph Neural Networks for the Prediction of Substrate-Specific Organic
Reaction Conditions [79.45090959869124]
有機化学反応をモデル化するために,グラフニューラルネットワーク(GNN)を用いた系統的研究を行った。
実験試薬と条件の識別に関わる分類タスクに対して、7つの異なるGNNアーキテクチャを評価した。
論文 参考訳(メタデータ) (2020-07-08T17:21:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。