Hybridizing Target- and SHAP-encoded Features for Algorithm Selection in Mixed-variable Black-box Optimization
- URL: http://arxiv.org/abs/2407.07439v1
- Date: Wed, 10 Jul 2024 07:47:31 GMT
- Title: Hybridizing Target- and SHAP-encoded Features for Algorithm Selection in Mixed-variable Black-box Optimization
- Authors: Konstantin Dietrich, Raphael Patrick Prager, Carola Doerr, Heike Trautmann,
- Abstract summary: ELA is used for problem comprehension, algorithm design, and applications such as automated algorithm selection and configuration.
Until recently, ELA was limited to search spaces with either continuous or discrete variables, neglecting problems with mixed variable types.
This gap was addressed in a recent study that uses an approach based on target-encoding to compute exploratory landscape features for mixed problems.
- Score: 0.9049664874474738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exploratory landscape analysis (ELA) is a well-established tool to characterize optimization problems via numerical features. ELA is used for problem comprehension, algorithm design, and applications such as automated algorithm selection and configuration. Until recently, however, ELA was limited to search spaces with either continuous or discrete variables, neglecting problems with mixed variable types. This gap was addressed in a recent study that uses an approach based on target-encoding to compute exploratory landscape features for mixedvariable problems. In this work, we investigate an alternative encoding scheme based on SHAP values. While these features do not lead to better results in the algorithm selection setting considered in previous work, the two different encoding mechanisms exhibit complementary performance. Combining both feature sets into a hybrid approach outperforms each encoding mechanism individually. Finally, we experiment with two different ways of meta-selecting between the two feature sets. Both approaches are capable of taking advantage of the performance complementarity of the models trained on target-encoded and SHAP-encoded feature sets, respectively.
Related papers
- Exploratory Landscape Analysis for Mixed-Variable Problems [0.7252027234425334]
We provide the means to compute exploratory landscape features for mixed-variable problems where the decision space is a mixture of continuous, binary, integer, and categorical variables.
To further highlight their merit for practical applications, we design and conduct an automated algorithm selection study.
Our trained algorithm selector is able to close the gap between the single best and the virtual best solver by 57.5% over all benchmark problems.
arXiv Detail & Related papers (2024-02-26T10:19:23Z) - Global and Preference-based Optimization with Mixed Variables using Piecewise Affine Surrogates [0.6083861980670925]
This paper proposes a novel surrogate-based global optimization algorithm to solve linearly constrained mixed-variable problems.
We assume the objective function is black-box and expensive-to-evaluate, while the linear constraints are quantifiable unrelaxable a priori known.
We introduce two types of exploration functions to efficiently search the feasible domain via mixed-integer linear programming solvers.
arXiv Detail & Related papers (2023-02-09T15:04:35Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Fair Feature Subset Selection using Multiobjective Genetic Algorithm [0.0]
We present a feature subset selection approach that improves both fairness and accuracy objectives.
We use statistical disparity as a fairness metric and F1-Score as a metric for model performance.
Our experiments on the most commonly used fairness benchmark datasets show that using the evolutionary algorithm we can effectively explore the trade-off between fairness and accuracy.
arXiv Detail & Related papers (2022-04-30T22:51:19Z) - A survey on multi-objective hyperparameter optimization algorithms for
Machine Learning [62.997667081978825]
This article presents a systematic survey of the literature published between 2014 and 2020 on multi-objective HPO algorithms.
We distinguish between metaheuristic-based algorithms, metamodel-based algorithms, and approaches using a mixture of both.
We also discuss the quality metrics used to compare multi-objective HPO procedures and present future research directions.
arXiv Detail & Related papers (2021-11-23T10:22:30Z) - Landscape-Aware Fixed-Budget Performance Regression and Algorithm
Selection for Modular CMA-ES Variants [1.0965065178451106]
We show that it is possible to achieve high-quality performance predictions with off-the-shelf supervised learning approaches.
We test this approach on a portfolio of very similar algorithms, which we choose from the family of modular CMA-ES algorithms.
arXiv Detail & Related papers (2020-06-17T13:34:57Z) - Objective-Sensitive Principal Component Analysis for High-Dimensional
Inverse Problems [0.0]
We present a novel approach for adaptive, differentiable parameterization of large-scale random fields.
The developed technique is based on principal component analysis (PCA) but modifies a purely data-driven basis of principal components considering objective function behavior.
Three algorithms for optimal parameter decomposition are presented and applied to an objective of 2D synthetic history matching.
arXiv Detail & Related papers (2020-06-02T18:51:17Z) - Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and
Self-Control Gradient Estimator [62.26981903551382]
Variational auto-encoders (VAEs) with binary latent variables provide state-of-the-art performance in terms of precision for document retrieval.
We propose a pairwise loss function with discrete latent VAE to reward within-class similarity and between-class dissimilarity for supervised hashing.
This new semantic hashing framework achieves superior performance compared to the state-of-the-arts.
arXiv Detail & Related papers (2020-05-21T06:11:33Z) - Discovering Representations for Black-box Optimization [73.59962178534361]
We show that black-box optimization encodings can be automatically learned, rather than hand designed.
We show that learned representations make it possible to solve high-dimensional problems with orders of magnitude fewer evaluations than the standard MAP-Elites.
arXiv Detail & Related papers (2020-03-09T20:06:20Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
We propose a novel Bayesian optimization (BO) algorithm to tackle the challenge of model selection in this setting.
In order to solve the resulting multiple black-box function optimization problem jointly and efficiently, we exploit potential correlations among black-box functions.
We are the first to formulate the problem of stepwise model selection (SMS) for sequence prediction, and to design and demonstrate an efficient joint-learning algorithm for this purpose.
arXiv Detail & Related papers (2020-01-12T09:42:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.