SPIO: Ensemble and Selective Strategies via LLM-Based Multi-Agent Planning in Automated Data Science
- URL: http://arxiv.org/abs/2503.23314v1
- Date: Sun, 30 Mar 2025 04:45:32 GMT
- Title: SPIO: Ensemble and Selective Strategies via LLM-Based Multi-Agent Planning in Automated Data Science
- Authors: Wonduk Seo, Juhyeon Lee, Yi Bu,
- Abstract summary: Large Language Models (LLMs) have revolutionized automated data analytics and machine learning by enabling dynamic reasoning and adaptability.<n>We propose SPIO, a novel framework that orchestrates multi-agent planning across four key modules.<n>In each module, dedicated planning agents independently generate candidate strategies that cascade into subsequent stages, fostering comprehensive exploration.
- Score: 1.1343849658875087
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) have revolutionized automated data analytics and machine learning by enabling dynamic reasoning and adaptability. While recent approaches have advanced multi-stage pipelines through multi-agent systems, they typically rely on rigid, single-path workflows that limit the exploration and integration of diverse strategies, often resulting in suboptimal predictions. To address these challenges, we propose SPIO (Sequential Plan Integration and Optimization), a novel framework that leverages LLM-driven decision-making to orchestrate multi-agent planning across four key modules: data preprocessing, feature engineering, modeling, and hyperparameter tuning. In each module, dedicated planning agents independently generate candidate strategies that cascade into subsequent stages, fostering comprehensive exploration. A plan optimization agent refines these strategies by suggesting several optimized plans. We further introduce two variants: SPIO-S, which selects a single best solution path as determined by the LLM, and SPIO-E, which selects the top k candidate plans and ensembles them to maximize predictive performance. Extensive experiments on Kaggle and OpenML datasets demonstrate that SPIO significantly outperforms state-of-the-art methods, providing a robust and scalable solution for automated data science task.
Related papers
- Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
Reinforcement learning from human feedback has emerged as an effective technique to align Large Language models.<n>Controlled Decoding provides a mechanism for aligning a model at inference time without retraining.<n>We propose a mixture of agent-based decoding strategies leveraging the existing off-the-shelf aligned LLM policies.
arXiv Detail & Related papers (2025-03-27T17:34:25Z) - A Survey on the Optimization of Large Language Model-based Agents [16.733092886211097]
Large Language Models (LLMs) have been widely adopted in various fields, becoming essential for autonomous decision-making and interactive tasks.<n>However, current work typically relies on prompt design or fine-tuning strategies applied to vanilla LLMs.<n>We provide a comprehensive review of LLM-based agent optimization approaches, categorizing them into parameter-driven and parameter-free methods.
arXiv Detail & Related papers (2025-03-16T10:09:10Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline.
Recent works have started exploiting large language models (LLM) to lessen such burden.
This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML.
arXiv Detail & Related papers (2024-10-03T20:01:09Z) - MLRS-PDS: A Meta-learning recommendation of dynamic ensemble selection pipelines [3.1140073169854485]
This paper introduces a meta-learning recommendation system (MLRS) to recommend the optimal pool generation scheme for dynamic ensemble selection.
The system employs a meta-model built from dataset meta-features to predict the most suitable pool generation scheme and DES method for a given dataset.
We demonstrate that this meta-learning recommendation system outperforms traditional fixed pool or DES method selection strategies.
arXiv Detail & Related papers (2024-07-10T10:31:57Z) - Unlocking Large Language Model's Planning Capabilities with Maximum Diversity Fine-tuning [10.704716790096498]
Large language models (LLMs) have demonstrated impressive task-solving capabilities through prompting techniques and system designs.
For planning tasks with limited prior data, the performance of LLMs, including proprietary models like GPT and Gemini, is poor.
This paper investigates the impact of fine-tuning on the planning capabilities of LLMs.
arXiv Detail & Related papers (2024-06-15T03:06:14Z) - FIPO: Free-form Instruction-oriented Prompt Optimization with Preference Dataset and Modular Fine-tuning Schema [36.65009632307124]
We propose Free-from Instruction-oriented Prompt Optimization (FIPO) to improve task performance of large language models (LLMs)<n>FIPO uses a modular APO template that dynamically integrate the naive task instruction, optional instruction responses, and optional ground truth to produce finely optimized prompts.<n>We validate FIPO framework across five public benchmarks and six testing models.
arXiv Detail & Related papers (2024-02-19T03:56:44Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
We propose an easy-to-implement online reinforcement learning (online RL) framework called textttMEX.
textttMEX integrates estimation and planning components while balancing exploration exploitation automatically.
It can outperform baselines by a stable margin in various MuJoCo environments with sparse rewards.
arXiv Detail & Related papers (2023-05-29T17:25:26Z) - AdaPlanner: Adaptive Planning from Feedback with Language Models [56.367020818139665]
Large language models (LLMs) have recently demonstrated the potential in acting as autonomous agents for sequential decision-making tasks.
We propose a closed-loop approach, AdaPlanner, which allows the LLM agent to refine its self-generated plan adaptively in response to environmental feedback.
To mitigate hallucination, we develop a code-style LLM prompt structure that facilitates plan generation across a variety of tasks, environments, and agent capabilities.
arXiv Detail & Related papers (2023-05-26T05:52:27Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency.
We propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem.
Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines.
arXiv Detail & Related papers (2022-11-29T17:10:24Z) - Consolidated learning -- a domain-specific model-free optimization
strategy with examples for XGBoost and MIMIC-IV [4.370097023410272]
This paper proposes a new formulation of the tuning problem, called consolidated learning.
In such settings, we are interested in the total optimization time rather than tuning for a single task.
We demonstrate the effectiveness of this approach through an empirical study for XGBoost algorithm and the collection of predictive tasks extracted from the MIMIC-IV medical database.
arXiv Detail & Related papers (2022-01-27T21:38:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.