How to Leverage Predictive Uncertainty Estimates for Reducing Catastrophic Forgetting in Online Continual Learning
- URL: http://arxiv.org/abs/2407.07668v2
- Date: Thu, 10 Oct 2024 10:34:08 GMT
- Title: How to Leverage Predictive Uncertainty Estimates for Reducing Catastrophic Forgetting in Online Continual Learning
- Authors: Giuseppe Serra, Ben Werner, Florian Buettner,
- Abstract summary: This work presents an in-depth analysis of different uncertainty estimates and strategies for populating the memory.
We propose an alternative method for estimating predictive uncertainty via the generalised variance induced by the negative log-likelihood.
We demonstrate that the use of predictive uncertainty measures helps in reducing CF in different settings.
- Score: 12.33899500566626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many real-world applications require machine-learning models to be able to deal with non-stationary data distributions and thus learn autonomously over an extended period of time, often in an online setting. One of the main challenges in this scenario is the so-called catastrophic forgetting (CF) for which the learning model tends to focus on the most recent tasks while experiencing predictive degradation on older ones. In the online setting, the most effective solutions employ a fixed-size memory buffer to store old samples used for replay when training on new tasks. Many approaches have been presented to tackle this problem. However, it is not clear how predictive uncertainty information for memory management can be leveraged in the most effective manner and conflicting strategies are proposed to populate the memory. Are the easiest-to-forget or the easiest-to-remember samples more effective in combating CF? Starting from the intuition that predictive uncertainty provides an idea of the samples' location in the decision space, this work presents an in-depth analysis of different uncertainty estimates and strategies for populating the memory. The investigation provides a better understanding of the characteristics data points should have for alleviating CF. Then, we propose an alternative method for estimating predictive uncertainty via the generalised variance induced by the negative log-likelihood. Finally, we demonstrate that the use of predictive uncertainty measures helps in reducing CF in different settings.
Related papers
- Adaptive Pre-training Data Detection for Large Language Models via Surprising Tokens [1.2549198550400134]
Large language models (LLMs) are extensively used, but there are concerns regarding privacy, security, and copyright due to their opaque training data.
Current solutions to this problem leverage techniques explored in machine learning privacy such as Membership Inference Attacks (MIAs)
We propose an adaptive pre-training data detection method which alleviates this reliance and effectively amplify the identification.
arXiv Detail & Related papers (2024-07-30T23:43:59Z) - Iterative Ensemble Training with Anti-Gradient Control for Mitigating Memorization in Diffusion Models [20.550324116099357]
Diffusion models are known for their tremendous ability to generate novel and high-quality samples.
Recent approaches for memory mitigation either only focused on the text modality problem in cross-modal generation tasks or utilized data augmentation strategies.
We propose a novel training framework for diffusion models from the perspective of visual modality, which is more generic and fundamental for mitigating memorization.
arXiv Detail & Related papers (2024-07-22T02:19:30Z) - Federated Continual Learning Goes Online: Uncertainty-Aware Memory Management for Vision Tasks and Beyond [13.867793835583463]
We propose an uncertainty-aware memory-based approach to solve catastrophic forgetting.
We retrieve samples with specific characteristics, and - by retraining the model on such samples - we demonstrate the potential of this approach.
arXiv Detail & Related papers (2024-05-29T09:29:39Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.
To mitigate the problem, a line of methods propose to replay the data of experienced tasks when learning new tasks.
However, it is not expected in practice considering the memory constraint or data privacy issue.
As a replacement, data-free data replay methods are proposed by inverting samples from the classification model.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Overcoming Overconfidence for Active Learning [1.2776312584227847]
We present two novel methods to address the problem of overconfidence that arises in the active learning scenario.
The first is an augmentation strategy named Cross-Mix-and-Mix (CMaM), which aims to calibrate the model by expanding the limited training distribution.
The second is a selection strategy named Ranked Margin Sampling (RankedMS), which prevents choosing data that leads to overly confident predictions.
arXiv Detail & Related papers (2023-08-21T09:04:54Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step Inference [54.17205151960878]
We introduce a sampling-free approach that is generic and easy to deploy.
We produce reliable uncertainty estimates on par with state-of-the-art methods at a significantly lower computational cost.
arXiv Detail & Related papers (2022-11-21T13:23:09Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z) - Continual Learning for Fake Audio Detection [62.54860236190694]
This paper proposes detecting fake without forgetting, a continual-learning-based method, to make the model learn new spoofing attacks incrementally.
Experiments are conducted on the ASVspoof 2019 dataset.
arXiv Detail & Related papers (2021-04-15T07:57:05Z) - Do Not Forget to Attend to Uncertainty while Mitigating Catastrophic
Forgetting [29.196246255389664]
One of the major limitations of deep learning models is that they face catastrophic forgetting in an incremental learning scenario.
We consider a Bayesian formulation to obtain the data and model uncertainties.
We also incorporate self-attention framework to address the incremental learning problem.
arXiv Detail & Related papers (2021-02-03T06:54:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.