論文の概要: Search, Examine and Early-Termination: Fake News Detection with Annotation-Free Evidences
- arxiv url: http://arxiv.org/abs/2407.07931v1
- Date: Wed, 10 Jul 2024 07:22:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 21:48:59.273330
- Title: Search, Examine and Early-Termination: Fake News Detection with Annotation-Free Evidences
- Title(参考訳): 検索, 検査, 早期発見: 注釈のない証拠を用いたフェイクニュース検出
- Authors: Yuzhou Yang, Yangming Zhou, Qichao Ying, Zhenxing Qian, Xinpeng Zhang,
- Abstract要約: 我々は,Web 検索したアノテーションのない証拠から有用な情報を検索する textbfSEE という手法を提案する。
実験の結果,提案手法は最先端手法よりも優れていた。
- 参考スコア(独自算出の注目度): 32.11238363508177
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pioneer researches recognize evidences as crucial elements in fake news detection apart from patterns. Existing evidence-aware methods either require laborious pre-processing procedures to assure relevant and high-quality evidence data, or incorporate the entire spectrum of available evidences in all news cases, regardless of the quality and quantity of the retrieved data. In this paper, we propose an approach named \textbf{SEE} that retrieves useful information from web-searched annotation-free evidences with an early-termination mechanism. The proposed SEE is constructed by three main phases: \textbf{S}earching online materials using the news as a query and directly using their titles as evidences without any annotating or filtering procedure, sequentially \textbf{E}xamining the news alongside with each piece of evidence via attention mechanisms to produce new hidden states with retrieved information, and allowing \textbf{E}arly-termination within the examining loop by assessing whether there is adequate confidence for producing a correct prediction. We have conducted extensive experiments on datasets with unprocessed evidences, i.e., Weibo21, GossipCop, and pre-processed evidences, namely Snopes and PolitiFact. The experimental results demonstrate that the proposed method outperforms state-of-the-art approaches.
- Abstract(参考訳): パイオニアの研究は、証拠をパターンとは別に偽ニュースを検出する重要な要素として認識している。
既存のエビデンス対応手法は、関連性のある、高品質なエビデンスデータを保証するために、精巧な事前処理手順を必要とするか、検索されたデータの品質と量に関係なく、すべてのニュースケースに利用可能なエビデンスの全スペクトルを組み込むかのいずれかである。
本稿では,Webで検索したアノテーションのない証拠から,早期終了機構を用いて有用な情報を抽出するアプローチであるtextbf{SEE}を提案する。
提案したSEEは3つの主要なフェーズで構築されている: ニュースをクエリとして使用し、そのタイトルを直接エビデンスとして使用し、アノテーションやフィルタリングの手順を使わずにエビデンスとして使用する。
我々は未処理のエビデンス、すなわちWeibo21、GossipCop、およびSnopesやPolitiFactといった前処理のエビデンスを用いたデータセットに関する広範な実験を行った。
実験の結果,提案手法は最先端手法よりも優れていた。
関連論文リスト
- Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
プロンプト・アンド・アライン(Prompt-and-Align、P&A)は、数発のフェイクニュース検出のための新しいプロンプトベースのパラダイムである。
我々はP&Aが、数発のフェイクニュース検出性能をかなりのマージンで新たな最先端に設定していることを示す。
論文 参考訳(メタデータ) (2023-09-28T13:19:43Z) - Give Me More Details: Improving Fact-Checking with Latent Retrieval [58.706972228039604]
証拠は、自動化された事実チェックにおいて重要な役割を果たす。
既存のファクトチェックシステムは、エビデンス文が与えられたと仮定するか、検索エンジンが返した検索スニペットを使用する。
資料から得られた全文を証拠として組み込んで,2つの豊富なデータセットを導入することを提案する。
論文 参考訳(メタデータ) (2023-05-25T15:01:19Z) - Complex Claim Verification with Evidence Retrieved in the Wild [73.19998942259073]
Webから生の証拠を取り出すことによって,実世界のクレームをチェックするための,最初の完全自動化パイプラインを提示する。
私たちのパイプラインには,クレーム分解,生文書検索,きめ細かい証拠検索,クレーム中心の要約,正確性判定という5つのコンポーネントが含まれています。
論文 参考訳(メタデータ) (2023-05-19T17:49:19Z) - Read it Twice: Towards Faithfully Interpretable Fact Verification by
Revisiting Evidence [59.81749318292707]
本稿では,証拠の検索とクレームの検証を行うためにReReadという名前の事実検証モデルを提案する。
提案システムは,異なる設定下での最良のレポートモデルに対して,大幅な改善を実現することができる。
論文 参考訳(メタデータ) (2023-05-02T03:23:14Z) - GERE: Generative Evidence Retrieval for Fact Verification [57.78768817972026]
本稿では,ジェネレーション方式で証拠を検索する最初のシステムであるGEREを提案する。
FEVERデータセットの実験結果は、GEREが最先端のベースラインよりも大幅に改善されていることを示している。
論文 参考訳(メタデータ) (2022-04-12T03:49:35Z) - Mining Fine-grained Semantics via Graph Neural Networks for
Evidence-based Fake News Detection [20.282527436527765]
本稿では,グラフベースのsEmantic sTructureマイニングフレームワークを提案する。
我々は、クレームとエビデンスをグラフ構造化データとしてモデル化し、長距離セマンティック依存関係をキャプチャします。
文脈意味情報を得た後、グラフ構造学習を行うことにより、情報冗長性を低減する。
論文 参考訳(メタデータ) (2022-01-18T11:28:36Z) - Automated Evidence Collection for Fake News Detection [11.324403127916877]
本稿では,現在行われている偽ニュース検出手法を改良した新しい手法を提案する。
提案手法は,Web記事からエビデンスを抽出し,エビデンスとして扱うための適切なテキストを選択する。
我々の実験は、機械学習とディープラーニングに基づく手法の両方を用いて、我々のアプローチを広範囲に評価するのに役立つ。
論文 参考訳(メタデータ) (2021-12-13T09:38:41Z) - Weakly- and Semi-supervised Evidence Extraction [107.47661281843232]
本稿では,エビデンス抽出の課題に対して,いくつかのエビデンスアノテーションと豊富な文書レベルラベルを組み合わせた新たな手法を提案する。
私たちのアプローチは、数百のエビデンスアノテーションでかなりの利益をもたらします。
論文 参考訳(メタデータ) (2020-11-03T04:05:00Z) - Hierarchical Evidence Set Modeling for Automated Fact Extraction and
Verification [5.836068916903788]
階層的エビデンス・セット・モデリング(Heerarchical Evidence Set Modeling, HESM)は、エビデンス・セットを抽出し、サポート対象のクレームを検証するためのフレームワークである。
実験の結果,HESMは事実抽出とクレーム検証の7つの最先端手法より優れていた。
論文 参考訳(メタデータ) (2020-10-10T22:27:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。