Unsupervised Beyond-Standard-Model Event Discovery at the LHC with a Novel Quantum Autoencoder
- URL: http://arxiv.org/abs/2407.07961v1
- Date: Wed, 10 Jul 2024 18:01:11 GMT
- Title: Unsupervised Beyond-Standard-Model Event Discovery at the LHC with a Novel Quantum Autoencoder
- Authors: Callum Duffy, Mohammad Hassanshah, Marcin Jastrzebski, Sarah Malik,
- Abstract summary: This study explores the potential of unsupervised anomaly detection for identifying physics beyond the Standard Model at the Large Hadron Collider.
We introduce a novel quantum autoencoder circuit ansatz that is specifically designed for this task and demonstrates superior performance compared to previous approaches.
We investigate the properties of quantum autoencoder circuits, focusing on entanglement and magic.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores the potential of unsupervised anomaly detection for identifying physics beyond the Standard Model that may appear at proton collisions at the Large Hadron Collider. We introduce a novel quantum autoencoder circuit ansatz that is specifically designed for this task and demonstrates superior performance compared to previous approaches. To assess its robustness, we evaluate the quantum autoencoder on various types of new physics 'signal' events and varying problem sizes. Additionally, we develop classical autoencoders that outperform previously proposed quantum autoencoders but remain outpaced by the new quantum ansatz, despite its significantly reduced number of trainable parameters. Finally, we investigate the properties of quantum autoencoder circuits, focusing on entanglement and magic. We introduce a novel metric in the context of parameterised quantum circuits, stabilizer 2-R\'enyi entropy to quantify magic, along with the previously studied Meyer-Wallach measure for entanglement. Intriguingly, both metrics decreased throughout the training process along with the decrease in the loss function. This appears to suggest that models preferentially learn parameters that reduce these metrics. This study highlights the potential utility of quantum autoencoders in searching for physics beyond the Standard Model at the Large Hadron Collider and opens exciting avenues for further research into the role of entanglement and magic in quantum machine learning more generally.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Guided Quantum Compression for Higgs Identification [0.0]
Quantum machine learning provides a fundamentally novel and promising approach to analyzing data.
We show that using a classical auto-encoder as an independent preprocessing step can significantly decrease the classification performance of a quantum machine learning algorithm.
We design an architecture that unifies the preprocessing and quantum classification algorithms into a single trainable model: the guided quantum compression model.
arXiv Detail & Related papers (2024-02-14T19:01:51Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum anomaly detection in the latent space of proton collision events
at the LHC [1.0480625205078853]
We propose a new strategy for anomaly detection at the LHC based on unsupervised quantum machine learning algorithms.
For kernel-based anomaly detection, we identify a regime where the quantum model significantly outperforms its classical counterpart.
We demonstrate that the observed consistent performance advantage is related to the inherent quantum properties of the circuit used.
arXiv Detail & Related papers (2023-01-25T19:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Anomaly detection in high-energy physics using a quantum autoencoder [0.0]
We study quantum autoencoders based on variational quantum circuits for the problem of anomaly detection at the LHC.
For a QCD $tbart$ background and resonant heavy Higgs signals, we find that a simple quantum autoencoder outperforms classical autoencoders for the same inputs and trains very efficiently.
This shows that quantum autoencoders are good candidates for analysing high-energy physics data in future LHC runs.
arXiv Detail & Related papers (2021-12-09T14:38:14Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
Finding ground states and low-lying excitations of a given Hamiltonian is one of the most important problems in many fields of physics.
quantum computing on Noisy Intermediate-Scale Quantum (NISQ) devices offers the prospect to efficiently perform such computations.
Current quantum devices still suffer from inherent quantum noise.
arXiv Detail & Related papers (2021-11-30T16:08:01Z) - Noise-Assisted Quantum Autoencoder [7.33811357166334]
Previous quantum autoencoders fail to compress and recover high-rank mixed states.
We present a noise-assisted quantum autoencoder algorithm to go beyond the limitations.
For pure state ensemble compression, we also introduce a projected quantum autoencoder algorithm.
arXiv Detail & Related papers (2020-12-15T14:39:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.