論文の概要: Adaptive Deep Iris Feature Extractor at Arbitrary Resolutions
- arxiv url: http://arxiv.org/abs/2407.08341v1
- Date: Thu, 11 Jul 2024 09:44:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 17:59:20.725234
- Title: Adaptive Deep Iris Feature Extractor at Arbitrary Resolutions
- Title(参考訳): 任意分解能における適応型深部虹彩特徴エクストラクタ
- Authors: Yuho Shoji, Yuka Ogino, Takahiro Toizumi, Atsushi Ito,
- Abstract要約: 分解能劣化は、高解像度画像で訓練されたディープラーニングモデルの認識性能を低下させる。
我々のフレームワークには、異なる分解能劣化に特化した分解能専門家モジュールが含まれています。
低解像度の専門家は、両方の専門家が共通のアイデンティティの特徴を抽出できるように、高解像度の専門家からの知識蒸留によって訓練される。
- 参考スコア(独自算出の注目度): 0.5312303275762104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a deep feature extractor for iris recognition at arbitrary resolutions. Resolution degradation reduces the recognition performance of deep learning models trained by high-resolution images. Using various-resolution images for training can improve the model's robustness while sacrificing recognition performance for high-resolution images. To achieve higher recognition performance at various resolutions, we propose a method of resolution-adaptive feature extraction with automatically switching networks. Our framework includes resolution expert modules specialized for different resolution degradations, including down-sampling and out-of-focus blurring. The framework automatically switches them depending on the degradation condition of an input image. Lower-resolution experts are trained by knowledge-distillation from the high-resolution expert in such a manner that both experts can extract common identity features. We applied our framework to three conventional neural network models. The experimental results show that our method enhances the recognition performance at low-resolution in the conventional methods and also maintains their performance at high-resolution.
- Abstract(参考訳): 本稿では,任意の解像度で虹彩認識を行うための深部特徴抽出器を提案する。
分解能劣化は、高解像度画像で訓練されたディープラーニングモデルの認識性能を低下させる。
高解像度画像の認識性能を犠牲にしながら、各種解像度画像のトレーニングによりモデルの堅牢性を向上させることができる。
様々な解像度で高い認識性能を実現するために,自動切替ネットワークを用いた分解能適応特徴抽出法を提案する。
我々のフレームワークには、ダウンサンプリングやアウト・オブ・フォーカスのぼかしなど、様々な分解能劣化に特化した分解能専門家モジュールが含まれています。
入力画像の劣化条件に応じて自動的に切り替える。
低解像度の専門家は、両方の専門家が共通のアイデンティティの特徴を抽出できるように、高解像度の専門家からの知識蒸留によって訓練される。
従来の3つのニューラルネットワークモデルに我々のフレームワークを適用した。
実験結果から,本手法は従来手法の低解像度での認識性能の向上と高解像度での認識性能の維持を図っている。
関連論文リスト
- Exploring Deep Learning Image Super-Resolution for Iris Recognition [50.43429968821899]
重畳自動エンコーダ(SAE)と畳み込みニューラルネットワーク(CNN)の2つの深層学習単一画像超解法手法を提案する。
精度評価と認識実験により,1.872個の近赤外虹彩画像のデータベースを用いて評価を行い,比較アルゴリズムよりも深層学習の方が優れていることを示す。
論文 参考訳(メタデータ) (2023-11-02T13:57:48Z) - Cross-resolution Face Recognition via Identity-Preserving Network and
Knowledge Distillation [12.090322373964124]
クロスレゾリューション顔認識は、現代の深層顔認識システムにとって難しい問題である。
本稿では,低分解能画像の低周波成分に蓄積される識別情報にネットワークを集中させる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-03-15T14:52:46Z) - Exploring Resolution and Degradation Clues as Self-supervised Signal for
Low Quality Object Detection [77.3530907443279]
劣化した低解像度画像中の物体を検出するための,新しい自己教師型フレームワークを提案する。
本手法は, 既存手法と比較して, 異変劣化状況に直面する場合に比べ, 優れた性能を示した。
論文 参考訳(メタデータ) (2022-08-05T09:36:13Z) - Multi-Scale Aligned Distillation for Low-Resolution Detection [68.96325141432078]
本稿では,高分解能モデルや多分解能モデルから知識を抽出することで,低分解能モデルの性能を向上させることに焦点を当てる。
いくつかのインスタンスレベルの検出タスクとデータセットにおいて,本手法を用いて訓練された低解像度モデルと,従来のマルチスケールトレーニングによる訓練された高解像度モデルとを競合的に処理する。
論文 参考訳(メタデータ) (2021-09-14T12:53:35Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
クロスリゾリューション顔認識(CRFR)は、インテリジェントな監視およびバイオメトリックフォレンジックにおいて重要である。
既存の浅層学習と深層学習に基づく手法は、HR-LR対を共同特徴空間にマッピングすることに焦点を当てている。
本研究では,多レベル深層畳み込みニューラルネットワーク(CNN)の機能を完全に活用し,堅牢なCRFRを実現することを目的とする。
論文 参考訳(メタデータ) (2021-03-25T14:03:42Z) - A Generative Model for Hallucinating Diverse Versions of Super
Resolution Images [0.3222802562733786]
我々は、生成逆数モデルを用いて、同じ低解像度画像から異なる高解像度バージョンを得るという問題に取り組んでいる。
学習アプローチでは,高分解能画像の学習において,教師なしの保存と探索に高周波数を活用できる。
論文 参考訳(メタデータ) (2021-02-12T17:11:42Z) - Analysis and evaluation of Deep Learning based Super-Resolution
algorithms to improve performance in Low-Resolution Face Recognition [0.0]
超解像アルゴリズムは、関係する被験者の識別特性を回復することができる。
このプロジェクトは、顔の超解像のタスクのための異なるディープニューラルネットワークアーキテクチャを評価し、適応することを目的とした。
実験により、一般的なスーパーレゾリューションアーキテクチャは、高レゾリューション顔で訓練されたディープニューラルネットワークのフェイス検証性能を向上させることが判明した。
論文 参考訳(メタデータ) (2021-01-19T02:41:57Z) - Multi Scale Identity-Preserving Image-to-Image Translation Network for
Low-Resolution Face Recognition [7.6702700993064115]
本稿では,画像から画像へ変換する深層ニューラルネットワークを提案する。
アイデンティティ関連の情報を保存しながら、非常に低解像度の顔を高解像度の顔に超解き放つことができる。
論文 参考訳(メタデータ) (2020-10-23T09:21:06Z) - Feature Super-Resolution Based Facial Expression Recognition for
Multi-scale Low-Resolution Faces [7.634398926381845]
超解像法はしばしば低分解能画像の高精細化に使用されるが、FERタスクの性能は極低分解能画像では制限される。
本研究では,物体検出のための特徴的超解像法に触発されて,頑健な表情認識のための新たな生成逆ネットワークに基づく超解像法を提案する。
論文 参考訳(メタデータ) (2020-04-05T15:38:47Z) - Gated Fusion Network for Degraded Image Super Resolution [78.67168802945069]
本稿では,基本特徴と回復特徴を別々に抽出する二分岐畳み込みニューラルネットワークを提案する。
特徴抽出ステップを2つのタスク非依存ストリームに分解することで、デュアルブランチモデルがトレーニングプロセスを容易にすることができる。
論文 参考訳(メタデータ) (2020-03-02T13:28:32Z) - Cross-Resolution Adversarial Dual Network for Person Re-Identification
and Beyond [59.149653740463435]
人物再識別(re-ID)は、同一人物の画像をカメラビューでマッチングすることを目的としている。
カメラと関心のある人の距離が異なるため、解像度ミスマッチが期待できる。
本稿では,クロスレゾリューションな人物のリIDに対処する新たな生成的対向ネットワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T07:21:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。