論文の概要: A Two-Stage Machine Learning-Aided Approach for Quench Identification at the European XFEL
- arxiv url: http://arxiv.org/abs/2407.08408v1
- Date: Thu, 11 Jul 2024 11:21:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 17:49:33.778344
- Title: A Two-Stage Machine Learning-Aided Approach for Quench Identification at the European XFEL
- Title(参考訳): ヨーロッパXFELにおけるクエンチ同定のための2段階学習支援手法
- Authors: Lynda Boukela, Annika Eichler, Julien Branlard, Nur Zulaiha Jomhari,
- Abstract要約: 本稿では,欧州X線自由電子レーザーにおけるクエンチ識別のケーススタディに適用した機械学習支援型故障検出分離手法を提案する。
- 参考スコア(独自算出の注目度): 1.4642314911344287
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a machine learning-aided fault detection and isolation method applied to the case study of quench identification at the European X-Ray Free-Electron Laser. The plant utilizes 800 superconducting radio-frequency cavities in order to accelerate electron bunches to high energies of up to 17.5 GeV. Various faulty events can disrupt the nominal functioning of the accelerator, including quenches that can lead to a loss of the superconductivity of the cavities and the interruption of their operation. In this context, our solution consists in analyzing signals reflecting the dynamics of the cavities in a two-stage approach. (I) Fault detection that uses analytical redundancy to process the data and generate a residual. The evaluation of the residual through the generalized likelihood ratio allows detecting the faulty behaviors. (II) Fault isolation which involves the distinction of the quenches from the other faults. To this end, we proceed with a data-driven model of the k-medoids algorithm that explores different similarity measures, namely, the Euclidean and the dynamic time warping. Finally, we evaluate the new method and compare it to the currently deployed quench detection system, the results show the improved performance achieved by our method.
- Abstract(参考訳): 本稿では,欧州X線自由電子レーザーにおけるクエンチ識別のケーススタディに適用した機械学習支援型故障検出分離手法を提案する。
この工場は、最大17.5GeVの高エネルギーに電子束を加速するために800個の超伝導電波キャビティを使用している。
様々な障害事象は、キャビティの超伝導の喪失とそれらの動作の中断につながるクエンチを含む、加速器の名目上の機能を破壊しうる。
この文脈では、我々は2段階のアプローチでキャビティの力学を反映した信号を解析する。
一 分析冗長性を用いてデータを処理し、残余を生成する故障検出。
一般化確率比による残留物の評価は、欠陥挙動の検出を可能にする。
(II)
他の断層とクエンチを区別する断層分離。
そこで我々は,k-medoidsアルゴリズムのデータ駆動モデルを用いて,ユークリッドと動的時間ワープという,異なる類似度尺度を探索する。
最後に,本手法の評価を行い,現在展開中のクエンチ検出システムと比較した。
関連論文リスト
- Angel or Devil: Discriminating Hard Samples and Anomaly Contaminations for Unsupervised Time Series Anomaly Detection [4.767887707515356]
「無監督時系列異常検出の訓練は、有害な有害な異常汚染と有益なハードノーマルサンプルの識別に常に悩まされている。」
論文 参考訳(メタデータ) (2024-10-26T13:59:23Z) - Unsupervised Anomaly Detection Using Diffusion Trend Analysis [48.19821513256158]
本稿では, 劣化度に応じて, 復元傾向の分析により異常を検出する手法を提案する。
提案手法は,産業用異常検出のためのオープンデータセット上で検証される。
論文 参考訳(メタデータ) (2024-07-12T01:50:07Z) - Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis [54.550658461477106]
無人航空機(UAV)は将来のスマートシティにとって重要なインフラ要素となるだろう。
効率的な運用のためには、UAVの信頼性は障害や故障の常時監視によって保証されなければならない。
本稿では,信号処理と機械学習を利用して,包括的振動解析データを分析し,ローターブレードの欠陥の有無を判定する。
論文 参考訳(メタデータ) (2024-04-24T13:50:27Z) - Fast Particle-based Anomaly Detection Algorithm with Variational
Autoencoder [1.658130005539979]
本研究では,粒子ベース変分オートエンコーダ(VAE)の異常検出アルゴリズムであるSet-VAEを提案する。
従来のサブジェティネスに基づくジェット選択と比較して2倍の信号効率向上を示す。
システムトリガの今後の展開に注目して,異常検出の推論時間コストを削減するCLIP-VAEを提案する。
論文 参考訳(メタデータ) (2023-11-28T19:00:29Z) - An Improved Anomaly Detection Model for Automated Inspection of Power Line Insulators [0.0]
電力系統の信頼性を確保するためには絶縁体の検査が重要である。
検査プロセスを自動化するために、ディープラーニングがますます活用されています。
本稿では,異常検出とオブジェクト検出の2段階的アプローチを提案する。
論文 参考訳(メタデータ) (2023-11-14T11:36:20Z) - Two-phase Dual COPOD Method for Anomaly Detection in Industrial Control
System [0.0]
従来のICS異常検出法は透明性と解釈性に欠けていた。
本稿では,これらの課題に対処する2相二重コプラ型外乱検出法(COPOD)を提案する。
この方法は経験的分布関数に基づいており、パラメータフリーであり、各特徴の異常への寄与を定量化することで解釈性を提供する。
論文 参考訳(メタデータ) (2023-04-30T18:13:40Z) - Non-destructive Fault Diagnosis of Electronic Interconnects by Learning Signal Patterns of Reflection Coefficient in the Frequency Domain [1.8843687952462742]
本稿では,早期故障検出と相互接続欠陥の正確な診断のための新しい非破壊的手法を提案する。
提案手法は, 周波数範囲にわたる係数反射の信号パターンを利用して, 根本原因同定と重大度評価の両立を可能にする。
実験結果から,本手法は断層検出および診断に有効であり,実世界の産業応用に拡張できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-20T10:51:21Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Mitigating the Mutual Error Amplification for Semi-Supervised Object
Detection [92.52505195585925]
擬似ラベルの修正機構を導入し,相互誤りの増幅を緩和するクロス・インストラクション(CT)手法を提案する。
他の検出器からの予測を直接擬似ラベルとして扱う既存の相互指導法とは対照的に,我々はラベル修正モジュール(LRM)を提案する。
論文 参考訳(メタデータ) (2022-01-26T03:34:57Z) - Radio-Assisted Human Detection [61.738482870059805]
本稿では,無線情報を最先端検出手法に組み込んだ無線支援人体検知フレームワークを提案する。
我々は、人検出を支援するために、無線信号から無線の局部化と識別情報を抽出する。
シミュレーション可能なMicrosoft COCOデータセットとCaltechの歩行者データセットの実験では、平均平均精度(mAP)とミスレートが、無線情報を用いて改善できることが示されている。
論文 参考訳(メタデータ) (2021-12-16T09:53:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。