Enhancing octree-based context models for point cloud geometry compression with attention-based child node number prediction
- URL: http://arxiv.org/abs/2407.08528v1
- Date: Thu, 11 Jul 2024 14:16:41 GMT
- Title: Enhancing octree-based context models for point cloud geometry compression with attention-based child node number prediction
- Authors: Chang Sun, Hui Yuan, Xiaolong Mao, Xin Lu, Raouf Hamzaoui,
- Abstract summary: In point cloud geometry compression, most octreebased context models use the cross-entropy between the onehot encoding of node occupancy and the probability distribution predicted by the context model as the loss.
We first analyze why the cross-entropy loss function fails to accurately measure the difference between the one-hot encoding and the predicted probability distribution.
We propose an attention-based child node number prediction (ACNP) module to enhance the context models.
- Score: 12.074555015414886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In point cloud geometry compression, most octreebased context models use the cross-entropy between the onehot encoding of node occupancy and the probability distribution predicted by the context model as the loss. This approach converts the problem of predicting the number (a regression problem) and the position (a classification problem) of occupied child nodes into a 255-dimensional classification problem. As a result, it fails to accurately measure the difference between the one-hot encoding and the predicted probability distribution. We first analyze why the cross-entropy loss function fails to accurately measure the difference between the one-hot encoding and the predicted probability distribution. Then, we propose an attention-based child node number prediction (ACNP) module to enhance the context models. The proposed module can predict the number of occupied child nodes and map it into an 8- dimensional vector to assist the context model in predicting the probability distribution of the occupancy of the current node for efficient entropy coding. Experimental results demonstrate that the proposed module enhances the coding efficiency of octree-based context models.
Related papers
- Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
Denoising Diffusion Probabilistic Models (DDPMs) represent a contemporary class of generative models with exceptional qualities.
We build a novel generative model for link prediction using a dedicated design to decompose the likelihood estimation process via the Bayesian formula.
Our proposed method presents numerous advantages: (1) transferability across datasets without retraining, (2) promising generalization on limited training data, and (3) robustness against graph adversarial attacks.
arXiv Detail & Related papers (2024-09-13T02:23:55Z) - Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Enhancing context models for point cloud geometry compression with context feature residuals and multi-loss [17.88391386335647]
In point cloud geometry compression, context models usually use the one-hot encoding of node occupancy as the label.
We introduce the context feature residuals into the context model to amplify the differences between contexts.
We also add a multi-layer perception branch, that uses the mean squared error between its output and node occupancy as a loss function.
arXiv Detail & Related papers (2024-07-11T14:08:37Z) - Efficient Link Prediction via GNN Layers Induced by Negative Sampling [92.05291395292537]
Graph neural networks (GNNs) for link prediction can loosely be divided into two broad categories.
First, emphnode-wise architectures pre-compute individual embeddings for each node that are later combined by a simple decoder to make predictions.
Second, emphedge-wise methods rely on the formation of edge-specific subgraph embeddings to enrich the representation of pair-wise relationships.
arXiv Detail & Related papers (2023-10-14T07:02:54Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - On the Prediction Instability of Graph Neural Networks [2.3605348648054463]
Instability of trained models can affect reliability, reliability, and trust in machine learning systems.
We systematically assess the prediction instability of node classification with state-of-the-art Graph Neural Networks (GNNs)
We find that up to one third of the incorrectly classified nodes differ across algorithm runs.
arXiv Detail & Related papers (2022-05-20T10:32:59Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Low-rank Characteristic Tensor Density Estimation Part II: Compression
and Latent Density Estimation [31.631861197477185]
Learning generative probabilistic models is a core problem in machine learning.
This paper proposes a joint dimensionality reduction and non-parametric density estimation framework.
We demonstrate that the proposed model achieves very promising results on regression tasks, sampling, and anomaly detection.
arXiv Detail & Related papers (2021-06-20T00:38:56Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
We propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution.
Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches.
arXiv Detail & Related papers (2021-06-07T17:44:49Z) - Going beyond accuracy: estimating homophily in social networks using
predictions [5.135290600093722]
In online social networks, it is common to use predictions of node categories to estimate measures of homophily.
We show that estimating homophily in a network can be viewed as a dyadic prediction problem.
We propose a novel "ego-alter" modeling approach that outperforms standard node and dyad classification strategies.
arXiv Detail & Related papers (2020-01-30T04:37:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.