論文の概要: SLoRD: Structural Low-Rank Descriptors for Shape Consistency in Vertebrae Segmentation
- arxiv url: http://arxiv.org/abs/2407.08555v1
- Date: Thu, 11 Jul 2024 14:39:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 17:00:06.455199
- Title: SLoRD: Structural Low-Rank Descriptors for Shape Consistency in Vertebrae Segmentation
- Title(参考訳): SLoRD:Vertebrae Segmentationにおける形状整合性のための構造的低ランク記述子
- Authors: Xin You, Yixin Lou, Minghui Zhang, Chuyan Zhang, Jie Yang, Yun Gu,
- Abstract要約: 我々は,CT画像から脊椎を自動的に正確に分割するための輪郭型ネットワークを提案する。
具体的には、SLoRDと呼ばれる形状整合性のための構造的低ランク記述子に基づく輪郭型ネットワークを提案する。
輪郭記述子をより正確に表現するために、球面座標系を採用し、球面セントロイドを考案する。
- 参考スコア(独自算出の注目度): 13.225110742269543
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic and precise segmentation of vertebrae from CT images is crucial for various clinical applications. However, due to a lack of explicit and strict constraints, existing methods especially for single-stage methods, still suffer from the challenge of intra-vertebrae segmentation inconsistency, which refers to multiple label predictions inside a singular vertebra. For multi-stage methods, vertebrae detection serving as the first step, is affected by the pathology and mental implants. Thus, incorrect detections cause biased patches before segmentation, then lead to inconsistent labeling and segmentation. In our work, motivated by the perspective of instance segmentation, we try to label individual and complete binary masks to address this limitation. Specifically, a contour-based network is proposed based on Structural Low-Rank Descriptors for shape consistency, termed SLoRD. These contour descriptors are acquired in a data-driven manner in advance. For a more precise representation of contour descriptors, we adopt the spherical coordinate system and devise the spherical centroid. Besides, the contour loss is designed to impose explicit consistency constraints, facilitating regressed contour points close to vertebral boundaries. Quantitative and qualitative evaluations on VerSe 2019 demonstrate the superior performance of our framework over other single-stage and multi-stage state-of-the-art (SOTA) methods.
- Abstract(参考訳): CT画像からの椎骨の自動的, 正確な分節化は, 様々な臨床応用に不可欠である。
しかし、明示的かつ厳密な制約が欠如しているため、既存の方法、特に単段階法では、単脊椎内の複数のラベル予測に言及する、脳内セグメンテーションの不整合の難しさに悩まされている。
多段階法では、第1段階としての脊椎検出は、病理学および精神インプラントに影響される。
したがって、誤検出はセグメンテーションの前にバイアスパッチを引き起こし、不整合ラベリングとセグメンテーションを引き起こす。
私たちの研究は、インスタンスセグメンテーションの観点から動機づけられ、この制限に対処するために、個別と完全なバイナリマスクをラベル付けしようとしています。
具体的には、SLoRDと呼ばれる形状整合性のための構造的低ランク記述子に基づく輪郭型ネットワークを提案する。
これらの輪郭記述子は、事前にデータ駆動方式で取得される。
輪郭記述子をより正確に表現するために、球面座標系を採用し、球面セントロイドを考案する。
さらに、輪郭の喪失は明示的な一貫性の制約を課すように設計されており、脊椎の境界に近い後退した輪郭点を促進する。
VerSe 2019の定量的および定性的な評価は、他のシングルステージおよびマルチステージのSOTA(State-of-the-art)メソッドよりも優れたパフォーマンスを示している。
関連論文リスト
- Beyond Point Annotation: A Weakly Supervised Network Guided by Multi-Level Labels Generated from Four-Point Annotation for Thyroid Nodule Segmentation in Ultrasound Image [8.132809580086565]
微妙な結節セグメンテーションの制約を洗練するために、4点アノテーションから多レベルラベルを生成する弱教師付きネットワークを提案する。
提案するネットワークは,2つの公開データセットにおいて,精度とロバスト性に関して,既存の弱教師付き手法よりも優れている。
論文 参考訳(メタデータ) (2024-10-25T06:34:53Z) - SpineCLUE: Automatic Vertebrae Identification Using Contrastive Learning
and Uncertainty Estimation [12.427024671144869]
脊椎疾患の診断において、任意の視野における動詞の同定が重要な役割を担っている。
スピンレベルの既存の方法は、この課題を満たすことができません。
椎骨レベルでの3次元CT椎骨識別の課題に対処する3段階法を提案する。
論文 参考訳(メタデータ) (2024-01-14T12:02:39Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
変性性脊椎疾患は高齢者に多い。
骨粗しょう性骨折やその他の変性変形性骨折のタイムリーな診断は、重度の腰痛や障害のリスクを軽減するための前向きな処置を促進する。
本研究では,脊椎動物に対する形状自動エンコーダの使用について検討する。
論文 参考訳(メタデータ) (2023-12-08T18:11:22Z) - RECIST Weakly Supervised Lesion Segmentation via Label-Space Co-Training [30.938824115941603]
本稿では,リッチなRECISTアノテーションを画素単位の病変セグメンテーションに活用するための弱教師付きフレームワークを提案する。
RECISTアノテーションに基づいて、病変ごとに一対のアンダーセグメンテーションマスクとオーバーセグメンテーションマスクが構築される。
提案フレームワークの優位性を示すために,公開データセット上で実験を行う。
論文 参考訳(メタデータ) (2023-03-01T03:15:31Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - ZScribbleSeg: Zen and the Art of Scribble Supervised Medical Image
Segmentation [16.188681108101196]
弱い教師付きセグメンテーションにのみスクリブルアノテーションを活用することを提案する。
既存のソリューションは主に注釈付き領域でのみ計算された選択的損失を利用する。
空間的関係と形状を事前にエンコードする正規化項を導入する。
我々は、ZScribbleSegと表記される統合フレームワークに、効率的なスクリブル監視を前者と統合する。
論文 参考訳(メタデータ) (2023-01-12T09:00:40Z) - TraSeTR: Track-to-Segment Transformer with Contrastive Query for
Instance-level Instrument Segmentation in Robotic Surgery [60.439434751619736]
そこで我々は,TraSeTRを提案する。TraSeTR,TraSeTR,Trace-to-Segment Transformerは,手術器具のセグメンテーションを支援する。
TraSeTRは、機器の種類、位置、アイデンティティとインスタンスレベルの予測を共同で理由付けている。
提案手法の有効性を,3つの公開データセットに対して,最先端の計器型セグメンテーション結果を用いて実証した。
論文 参考訳(メタデータ) (2022-02-17T05:52:18Z) - Context-aware virtual adversarial training for anatomically-plausible
segmentation [24.81862697703223]
本稿では,解剖学的に妥当なセグメンテーションを生成するために,コンテキスト対応の仮想敵訓練(CaVAT)法を提案する。
我々は,制約に違反する例を生成するために,敵対的トレーニングを用いて,そのような誤った予測をしないように学習する。
臨床的に関連のある2つのデータセットの実験では、領域接続性の観点から正確かつ解剖学的に解明可能なセグメンテーションを生成する方法が示されている。
論文 参考訳(メタデータ) (2021-07-12T16:01:27Z) - SOLD2: Self-supervised Occlusion-aware Line Description and Detection [95.8719432775724]
単一深層ネットワークにおける回線セグメントの最初の共同検出と記述について紹介します。
我々の手法は注釈付き行ラベルを必要としないため、任意のデータセットに一般化することができる。
複数のマルチビューデータセットにおいて,従来の行検出と記述方法に対するアプローチを評価した。
論文 参考訳(メタデータ) (2021-04-07T19:27:17Z) - Towards Unbiased COVID-19 Lesion Localisation and Segmentation via
Weakly Supervised Learning [66.36706284671291]
本研究では,画像レベルラベルのみに監視されたデータ駆動型フレームワークを提案する。
このフレームワークは、生成する対向ネットワークと病変特異的デコーダの助けを借りて、原画像から潜在的な病変を明示的に分離することができる。
論文 参考訳(メタデータ) (2021-03-01T06:05:49Z) - LT-Net: Label Transfer by Learning Reversible Voxel-wise Correspondence
for One-shot Medical Image Segmentation [52.2074595581139]
医用画像における手動アノテーションの負担を軽減するため, ワンショットセグメンテーション手法を提案する。
第一の考え方は、単発セグメンテーションを古典的なアトラスに基づくセグメンテーション問題として扱うことである。
深層学習に基づくワンショットセグメンテーション法と古典的マルチアトラスセグメンテーション法に比較して,本手法が優れていることを示す。
論文 参考訳(メタデータ) (2020-03-16T08:36:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。