論文の概要: Beyond Point Annotation: A Weakly Supervised Network Guided by Multi-Level Labels Generated from Four-Point Annotation for Thyroid Nodule Segmentation in Ultrasound Image
- arxiv url: http://arxiv.org/abs/2410.19332v1
- Date: Fri, 25 Oct 2024 06:34:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:35:52.373928
- Title: Beyond Point Annotation: A Weakly Supervised Network Guided by Multi-Level Labels Generated from Four-Point Annotation for Thyroid Nodule Segmentation in Ultrasound Image
- Title(参考訳): Beyond Point Annotation: 超音波画像における甲状腺結節分割のための4点アノテーションから生成した多層ラベルによる弱教師付きネットワーク
- Authors: Jianning Chi, Zelan Li, Huixuan Wu, Wenjun Zhang, Ying Huang,
- Abstract要約: 微妙な結節セグメンテーションの制約を洗練するために、4点アノテーションから多レベルラベルを生成する弱教師付きネットワークを提案する。
提案するネットワークは,2つの公開データセットにおいて,精度とロバスト性に関して,既存の弱教師付き手法よりも優れている。
- 参考スコア(独自算出の注目度): 8.132809580086565
- License:
- Abstract: Weakly-supervised methods typically guided the pixel-wise training by comparing the predictions to single-level labels containing diverse segmentation-related information at once, but struggled to represent delicate feature differences between nodule and background regions and confused incorrect information, resulting in underfitting or overfitting in the segmentation predictions. In this work, we propose a weakly-supervised network that generates multi-level labels from four-point annotation to refine diverse constraints for delicate nodule segmentation. The Distance-Similarity Fusion Prior referring to the points annotations filters out information irrelevant to nodules. The bounding box and pure foreground/background labels, generated from the point annotation, guarantee the rationality of the prediction in the arrangement of target localization and the spatial distribution of target/background regions, respectively. Our proposed network outperforms existing weakly-supervised methods on two public datasets with respect to the accuracy and robustness, improving the applicability of deep-learning based segmentation in the clinical practice of thyroid nodule diagnosis.
- Abstract(参考訳): 弱教師付き手法は、通常、予測を様々なセグメンテーション関連情報を含むシングルレベルラベルと比較することで、ピクセルワイズトレーニングを導いたが、結節と背景領域の微妙な特徴差と誤情報の混同を表現するのに苦労し、セグメンテーション予測に不適合または過度に適合する結果となった。
本研究では、4点アノテーションから多レベルラベルを生成し、微妙な結節分割のための多様な制約を洗練させる弱教師付きネットワークを提案する。
Distance-Similarity Fusion 先述のポイントアノテーションは、nodulesとは無関係に情報をフィルタリングする。
ポイントアノテーションから生成されたバウンディングボックスと純粋なフォアグラウンド/バックグラウンドラベルは、それぞれターゲットローカライゼーションの配置とターゲット/バックグラウンド領域の空間分布における予測の合理性を保証する。
提案するネットワークは, 甲状腺結節診断におけるディープラーニングに基づくセグメンテーションの適用性を向上し, 精度とロバスト性に関して, 既存の2つの公開データセット上の弱教師付き手法よりも優れていた。
関連論文リスト
- Deep Spectral Methods for Unsupervised Ultrasound Image Interpretation [53.37499744840018]
本稿では, 超音波を応用した非教師型深層学習手法を提案する。
我々は、スペクトルグラフ理論と深層学習法を組み合わせた教師なしディープスペクトル法から重要な概念を統合する。
スペクトルクラスタリングの自己教師型トランスフォーマー機能を利用して、超音波特有のメトリクスと形状と位置の先行値に基づいて意味のあるセグメントを生成し、データセット間のセマンティック一貫性を確保する。
論文 参考訳(メタデータ) (2024-08-04T14:30:14Z) - SLoRD: Structural Low-Rank Descriptors for Shape Consistency in Vertebrae Segmentation [13.225110742269543]
我々は,CT画像から脊椎を自動的に正確に分割するための輪郭型ネットワークを提案する。
具体的には、SLoRDと呼ばれる形状整合性のための構造的低ランク記述子に基づく輪郭型ネットワークを提案する。
輪郭記述子をより正確に表現するために、球面座標系を採用し、球面セントロイドを考案する。
論文 参考訳(メタデータ) (2024-07-11T14:39:54Z) - Scribble Hides Class: Promoting Scribble-Based Weakly-Supervised
Semantic Segmentation with Its Class Label [16.745019028033518]
画像レベルのクラスから情報を得たスクリブルアノテーションと擬似ラベルと、監督のためのグローバルセマンティクスの両方を利用するクラス駆動型スクリブルプロモーションネットワークを提案する。
スクリブルアノテーションの異なる性質を持つScribbleSupデータセットの実験は、従来の手法よりも優れており、本手法の優位性と堅牢性を示している。
論文 参考訳(メタデータ) (2024-02-27T14:51:56Z) - Adaptive Annotation Distribution for Weakly Supervised Point Cloud
Semantic Segmentation [41.49585975597466]
弱教師付きポイントクラウドセマンティックセマンティックセグメンテーションのための適応型アノテーション分布法を提案する。
具体的には、勾配サンプリング近似解析に確率密度関数を導入する。
非一様分散スパースアノテーションによる勾配バイアスを軽減するために、勾配校正関数として乗法動的エントロピーを設計する。
論文 参考訳(メタデータ) (2023-12-11T09:57:09Z) - Semi-Supervised Semantic Segmentation With Region Relevance [28.92449538610617]
半教師付きセマンティックセグメンテーションは、少数のラベル付きデータと多くのラベルなしデータから学ぶことを目的としている。
最も一般的なアプローチは、トレーニングデータを増やすためにラベルのない画像のための擬似ラベルを生成することである。
本稿では、上記の問題を緩和する地域関連ネットワーク(RRN)を提案する。
論文 参考訳(メタデータ) (2023-04-23T04:51:27Z) - One-Shot Medical Landmark Localization by Edge-Guided Transform and
Noisy Landmark Refinement [59.14062241534754]
医用ランドマークのワンショット化のための2段階のフレームワークを提案する。
ステージIでは,新たな損失関数の指導の下で,グローバルアライメントと局所変形のエンドツーエンドのカスケードを学習する。
ステージIIでは,信頼性の高い擬似ラベルを選択するための自己整合性や,半教師付き学習のための相互整合性について検討する。
論文 参考訳(メタデータ) (2022-07-31T15:42:28Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
本稿では,部分点アノテーションに基づく弱教師付きセグメンテーションフレームワークを提案する。
本手法は, 完全教師付き手法や最先端手法と比較して, 競争性能を向上できることを示す。
論文 参考訳(メタデータ) (2020-07-10T15:41:29Z) - Self-Supervised Tuning for Few-Shot Segmentation [82.32143982269892]
Few-shotのセグメンテーションは、アノテートされたサンプルがほとんどない各画像ピクセルにカテゴリラベルを割り当てることを目的としている。
既存のメタラーニング手法では, 画像から抽出した視覚的特徴を埋め込み空間に埋め込むと, カテゴリー別識別記述子の生成に失敗する傾向にある。
本稿では,複数のエピソードにまたがる潜在特徴の分布を,自己分割方式に基づいて動的に調整する適応型フレームワークチューニングを提案する。
論文 参考訳(メタデータ) (2020-04-12T03:53:53Z) - Bending Loss Regularized Network for Nuclei Segmentation in
Histopathology Images [69.74667930907314]
核分割のための曲げ損失正規化ネットワークを提案する。
提案した曲げ損失は、大きな曲率を持つ輪郭点に対する高い罰則を定義し、小さな曲率を持つ輪郭点に小さな罰則を適用する。
曲げ損失の最小化は、複数の核を含む輪郭の発生を避けることができる。
論文 参考訳(メタデータ) (2020-02-03T21:20:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。