論文の概要: Hyperfine-to-rotational energy transfer in ultracold atom-molecule collisions
- arxiv url: http://arxiv.org/abs/2407.08891v1
- Date: Thu, 11 Jul 2024 23:20:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 01:26:19.067481
- Title: Hyperfine-to-rotational energy transfer in ultracold atom-molecule collisions
- Title(参考訳): 超低温原子-分子衝突における超微細-回転エネルギー移動
- Authors: Yi-Xiang Liu, Lingbang Zhu, Jeshurun Luke, Mark C. Babin, Timur V. Tscherbul, Marcin Gronowski, Hela Ladjimi, Michał Tomza, John L. Bohn, Kang-Kuen Ni,
- Abstract要約: 原子-分子衝突における異なる機械的自由度間のエネルギー移動は、広く研究され、広く理解されている。
ここでは,原子超微粒子から分子回転へのエネルギー移動を直接観察した。
観測により、スピンが短距離での機械的回転と結合していることが確認され、将来の理論研究のためのベンチマークが確立される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Energy transfer between different mechanical degrees of freedom in atom-molecule collisions has been widely studied and largely understood. However, systems involving spins remain less explored, especially with a state-to-state precision. Here, we directly observed the energy transfer from atomic hyperfine to molecular rotation in the $^{87}$Rb ($|F_a,M_{F_a}\rangle = |2,2\rangle$) + $^{40}$K$^{87}$Rb (in the rovibronic ground state $N=0$) $\longrightarrow$ Rb ($ |1,1\rangle$) + KRb ($N=0,1,2$) exothermic collision. We probed the quantum states of the collision products using resonance-enhanced multi-photon ionization followed by time-of-flight mass spectrometry. We also carried out state-of-the-art quantum scattering calculations, which rigorously take into account the coupling between the spin and rotational degrees of freedom at short range, and assume that the KRb monomer can be treated as a rigid rotor moving on a single potential energy surface. The calculated product rotational state distribution deviates from the observations even after extensive tuning of the atom-molecule potential energy surface, suggesting that vibrational degrees of freedom and conical intersections play an important part in ultracold Rb + KRb collisions. Additionally, our ab initio calculations indicate that spin-rotation coupling is dramatically enhanced near a conical intersection, which is energetically accessible at short range. The observations confirm that spin is coupled to mechanical rotation at short range and establish a benchmark for future theoretical studies.
- Abstract(参考訳): 原子-分子衝突における異なる機械的自由度間のエネルギー移動は、広く研究され、広く理解されている。
しかし、スピンを含む系は、特に状態から状態への精度が低いままである。
ここでは、原子超微粒子から分子の回転へのエネルギー移動を直接観察する。$^{87}$Rb ($|F_a,M_{F_a}\rangle = |2,2\rangle$) + $^{40}$K$^{87}$Rb (ロビブロニック基底状態$N=0$) $\longrightarrow$Rb ($ |1,1\rangle$) + KRb ($N=0,1,2$) 外乱。
共鳴強調多光子イオン化法と時間飛行質量分析法を用いて衝突生成物の量子状態を調査した。
また,KRbモノマーを1つのポテンシャルエネルギー表面上を移動させる剛性ロータとして扱うことができると仮定し,スピンと回転自由度の結合を短時間で厳密に考慮した現状量子散乱計算を行った。
計算された積の回転状態分布は、原子-分子ポテンシャルエネルギー表面を広範囲に調整した後でも観測から逸脱し、超低温Rb+KRb衝突において振動の度合いと円錐交叉が重要な役割を果たすことを示唆している。
さらに、我々のab initio計算により、スピン回転結合は円錐交叉付近で劇的に強化され、短距離でエネルギー的にアクセス可能であることが示された。
観測により、スピンが短距離での機械的回転と結合していることが確認され、将来の理論研究のためのベンチマークが確立される。
関連論文リスト
- Observation of trap-assisted formation of atom-ion bound states [0.0]
極低温の87$Rb原子と8.8$Sr$+$イオンとの弱い結合分子状態の観察について報告する。
境界状態は二元衝突で効率的に形成でき、非弾性過程の速度を高めることができることを示す。
論文 参考訳(メタデータ) (2022-08-14T19:39:09Z) - Spin-zero bound states on the 2D Klein-Gordon equation under uniform
magnetic field [0.0]
一様磁場中を移動する相対論的スピン-0荷電粒子の相互作用モデルを提案する。
核相互作用に対する機能的アプローチとして、反粒子状態のない粒子境界状態を考える。
近似を$V(r)$$$neq$$0$と$S(r)$$$$$$$0$でスピンゼロ運動にすると、2D極空間に可解モデルを導入することができる。
論文 参考訳(メタデータ) (2022-08-09T13:28:23Z) - Deep anharmonicity to relativistic spin-0 particles in the spherical
regime [0.0]
電磁場を最小に結合した量子状態に移動する相対論的スピン-0電荷の近似について述べる。
荷電粒子のポテンシャル深さは相対論的エネルギーレベルに影響を及ぼし、粒子は200MeV、反粒子はおよそ10MeVであることがわかった。
論文 参考訳(メタデータ) (2022-08-07T11:02:52Z) - Computational Insights into Electronic Excitations, Spin-Orbit Coupling
Effects, and Spin Decoherence in Cr(IV)-based Molecular Qubits [63.18666008322476]
効率的な分子量子ビットの化学設計を支援することを目的としたCr(IV)系分子の鍵となる性質に関する知見を提供する。
一軸ゼロフィールドスプリッティング(ZFS)パラメータの符号は、すべての考慮された分子に対して負であることが判明した。
我々は、53ドルCr核スピンと13C核スピンと1H核スピンとの(超)超微細結合を定量化する。
論文 参考訳(メタデータ) (2022-05-01T01:23:10Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
固体中の核スピンは環境に弱く結合し、量子情報処理と慣性センシングの魅力的な候補となる。
我々は、原子核スピンコヒーレンス時間よりも高速で1,kHzで物理的に回転するダイヤモンド中の光核スピン偏光と原子核スピンの高速量子制御を実証した。
我々の研究は、それまで到達不可能だったNV核スピンの自由を解放し、量子制御と回転センシングに対する新しいアプローチを解き放つ。
論文 参考訳(メタデータ) (2021-07-27T03:39:36Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
本研究では, 重同族ランタノイドEr2およびTm2分子の電子的およびロ-振動状態について, 最先端相対論的手法を適用して検討した。
我々は、91のEr2と36のTm2電子ポテンシャルを2つの基底状態原子に解離させることで、信頼できるスピン軌道と相関による分裂を得ることができた。
論文 参考訳(メタデータ) (2021-07-06T15:34:00Z) - Atoms in a spin dependent optical potential: ground state topology and
magnetization [0.0]
2次元スピン依存光学格子における1$F=1$87$Rbのボース・アインシュタイン凝縮体について検討する。
原子は、原子の回転運動量と超微細スピンの和によって与えられる角運動量を持つ量子ローターとして振る舞う。
論文 参考訳(メタデータ) (2021-05-26T16:07:08Z) - Emission of Spin-correlated Matter-wave Jets from Spinor Bose-Einstein
Condensates [1.8353070352474108]
強強強強磁性スピノルBose-Einstein凝縮体における物質波ジェット放出の観測を報告した。
異なるスピン状態(|F=1,m_F=pm1rangle$)の物質-波ジェットは、空間的な分離を持つアインシュタイン-ポドルスキー-ローゼン状態である。
論文 参考訳(メタデータ) (2021-02-15T15:55:28Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
三原子分子の RaOH はレーザー冷却性とスペクトルの相反する二重項の利点を組み合わせたものである。
断熱ハミルトニアンから導かれる密結合方程式を用いて, 基底電子状態におけるRaOHの偏波関数と励起振動状態を得る。
論文 参考訳(メタデータ) (2020-12-15T17:08:33Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
分子電子レベルと核スピンレベルの両方を量子ビットとして用いることができる。
ドーパントを持つ固体系では、電場が核スピン量子ビットレベル間の間隔を効果的に変化させることが示されている。
この超微細スターク効果は量子コンピューティングにおける分子核スピンの応用に有用かもしれない。
論文 参考訳(メタデータ) (2020-07-31T01:48:57Z) - Hyperfine and quadrupole interactions for Dy isotopes in DyPc$_2$
molecules [77.57930329012771]
核スピンレベルは、磁化力学を理解し、ランタノイド系単一分子磁石における量子ビットの実装と制御において重要な役割を果たす。
アニオンDyPc$における161$Dyおよび163$Dy核の超微細および核四極子相互作用について検討した。
論文 参考訳(メタデータ) (2020-02-12T18:25:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。