論文の概要: Procedural Content Generation via Generative Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2407.09013v1
- Date: Fri, 12 Jul 2024 06:03:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 00:36:46.058701
- Title: Procedural Content Generation via Generative Artificial Intelligence
- Title(参考訳): 生成人工知能による手続き的コンテンツ生成
- Authors: Xinyu Mao, Wanli Yu, Kazunori D Yamada, Michael R. Zielewski,
- Abstract要約: 生成的人工知能(AI)は2010年代半ばに大きな関心を寄せた。
生成AIはPCGに有効であるが、高性能AIの構築には膨大なトレーニングデータが必要である。
PCG研究をさらに進めるためには、限られたトレーニングデータに関連する問題を克服する必要がある。
- 参考スコア(独自算出の注目度): 1.437446768735628
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The attempt to utilize machine learning in PCG has been made in the past. In this survey paper, we investigate how generative artificial intelligence (AI), which saw a significant increase in interest in the mid-2010s, is being used for PCG. We review applications of generative AI for the creation of various types of content, including terrains, items, and even storylines. While generative AI is effective for PCG, one significant issues it faces is that building high-performance generative AI requires vast amounts of training data. Because content generally highly customized, domain-specific training data is scarce, and straightforward approaches to generative AI models may not work well. For PCG research to advance further, issues related to limited training data must be overcome. Thus, we also give special consideration to research that addresses the challenges posed by limited training data.
- Abstract(参考訳): PCGで機械学習を活用する試みは過去にも行われてきた。
そこで本研究では,2010年代中盤に注目が集まってきた生成人工知能(AI)がPCGにどのように利用されているかを検討する。
我々は、地形、アイテム、さらにはストーリーラインを含む様々なタイプのコンテンツを作成するための生成AIの応用についてレビューする。
生成AIはPCGに有効だが、それが直面する重要な問題は、高性能生成AIの構築には膨大なトレーニングデータが必要であることだ。
コンテンツは一般的に高度にカスタマイズされているため、ドメイン固有のトレーニングデータは少なく、生成AIモデルへの直接的なアプローチはうまく機能しないかもしれない。
PCG研究をさらに進めるためには、限られたトレーニングデータに関連する問題を克服する必要がある。
このように、限られたトレーニングデータによってもたらされる課題に対処する研究についても、特別に検討する。
関連論文リスト
- On the Limitations and Prospects of Machine Unlearning for Generative AI [7.795648142175443]
Generative AI(GenAI)は、潜伏変数やその他のデータモダリティから現実的で多様なデータサンプルを合成することを目的としている。
GenAIは自然言語、画像、オーディオ、グラフなど、さまざまな領域で顕著な成果を上げている。
しかし、データプライバシ、セキュリティ、倫理に課題やリスクも生じている。
論文 参考訳(メタデータ) (2024-08-01T08:35:40Z) - Machine Unlearning in Generative AI: A Survey [19.698620794387338]
生成AI技術は、(マルチモーダル)大規模言語モデルやビジョン生成モデルなど、多くの場所で展開されている。
新しい機械学習(MU)技術は、望ましくない知識を減らしたり排除したりするために開発されている。
論文 参考訳(メタデータ) (2024-07-30T03:26:09Z) - Survey and Taxonomy: The Role of Data-Centric AI in Transformer-Based Time Series Forecasting [36.31269406067809]
データ中心のAIは、AIモデルのトレーニング、特にトランスフォーマーベースのTSFモデルの効率的なトレーニングに不可欠である、と私たちは主張する。
我々は、データ中心のAIの観点から、これまでの研究成果をレビューし、トランスフォーマーベースのアーキテクチャとデータ中心のAIの将来の開発のための基礎的な作業を行うつもりです。
論文 参考訳(メタデータ) (2024-07-29T08:27:21Z) - Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
生成AIは、学術分野と産業分野の両方から多くの注目を集めている。
セキュアでプライバシ保護のモバイルクラウドセンシング(SPPMCS)は、データ収集/取得に広く応用されている。
論文 参考訳(メタデータ) (2024-05-17T04:00:58Z) - On the Challenges and Opportunities in Generative AI [135.2754367149689]
現在の大規模生成AIモデルは、ドメイン間で広く採用されるのを妨げるいくつかの基本的な問題に十分対応していない、と我々は主張する。
本研究は、現代の生成型AIパラダイムにおける重要な未解決課題を特定し、その能力、汎用性、信頼性をさらに向上するために取り組まなければならない。
論文 参考訳(メタデータ) (2024-02-28T15:19:33Z) - Generative AI in Writing Research Papers: A New Type of Algorithmic Bias
and Uncertainty in Scholarly Work [0.38850145898707145]
大規模言語モデル(LLM)と生成AIツールは、バイアスを特定し、対処する上での課題を提示している。
生成型AIツールは、不正な一般化、幻覚、レッド・チーム・プロンプトのような敵攻撃を目標とする可能性がある。
研究原稿の執筆過程に生成AIを組み込むことで,新しいタイプの文脈依存型アルゴリズムバイアスがもたらされることがわかった。
論文 参考訳(メタデータ) (2023-12-04T04:05:04Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPTおよびその他の生成AI(GAI)技術は、人工知能生成コンテンツ(AIGC)のカテゴリに属している。
AIGCの目標は、コンテンツ作成プロセスをより効率的かつアクセスしやすくし、高品質なコンテンツをより高速に生産できるようにすることである。
論文 参考訳(メタデータ) (2023-03-07T20:36:13Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
AIモデルの開発に欠かせない役割にもかかわらず、アクティブラーニングの研究は他の研究の方向性ほど集中的ではない。
データ自動化の課題に対処し、自動化された機械学習システムに対処することによって、アクティブな学習はAI技術の民主化を促進する。
論文 参考訳(メタデータ) (2022-11-27T13:07:14Z) - A Survey of Machine Unlearning [56.017968863854186]
最近の規制では、要求に応じて、ユーザに関する個人情報をコンピュータシステムから削除する必要がある。
MLモデルは古いデータをよく記憶します。
機械学習に関する最近の研究は、この問題を完全に解決することはできなかった。
論文 参考訳(メタデータ) (2022-09-06T08:51:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。