論文の概要: Static Analysis of Logic Programs via Boolean Networks
- arxiv url: http://arxiv.org/abs/2407.09015v1
- Date: Fri, 12 Jul 2024 06:07:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 00:36:46.052691
- Title: Static Analysis of Logic Programs via Boolean Networks
- Title(参考訳): ブールネットワークを用いた論理プログラムの静的解析
- Authors: Van-Giang Trinh, Belaid Benhamou,
- Abstract要約: 「静的情報から論理プログラムの安定モデルについて何が言えるか」が研究され、多くの場面で有用であることが証明されている。
提案されたコネクションは、既存の結果をBooleanネットワークの静的解析の豊富な歴史に導いてくれる。
新しく得られた洞察は、ASP.NETの分野で多くの問題を解決する可能性がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Answer Set Programming (ASP) is a declarative problem solving paradigm that can be used to encode a combinatorial problem as a logic program whose stable models correspond to the solutions of the considered problem. ASP has been widely applied to various domains in AI and beyond. The question "What can be said about stable models of a logic program from its static information?" has been investigated and proved useful in many circumstances. In this work, we dive into this direction more deeply by making the connection between a logic program and a Boolean network, which is a prominent modeling framework with applications to various areas. The proposed connection can bring the existing results in the rich history on static analysis of Boolean networks to explore and prove more theoretical results on ASP, making it become a unified and powerful tool to further study the static analysis of ASP. In particular, the newly obtained insights have the potential to benefit many problems in the field of ASP.
- Abstract(参考訳): 解答集合プログラミング(Answer Set Programming, ASP)は、仮定された問題の解に対応する安定モデルを持つ論理プログラムとして組合せ問題の符号化に使用できる宣言的問題解決パラダイムである。
ASPはAIなどのさまざまな領域に広く適用されています。
静的情報から論理プログラムの安定モデルについて何が言えるのか?」という疑問が研究され、多くの状況で有用であることが証明されている。
本研究では,論理プログラムとBooleanネットワークを接続させることにより,この方向をさらに深く掘り下げる。
提案されたコネクションは、Booleanネットワークの静的解析に関する豊富な歴史に既存の結果をもたらし、ASP.NETの静的解析をさらに研究するための統一的で強力なツールとなる。
特に、新しく得られた洞察は、ASP.NETの分野で多くの問題を解決する可能性がある。
関連論文リスト
- Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
符号化の対象はデータの圧縮と再構成、インテリジェンスである。
最近の傾向は、これらの2つの分野の潜在的均一性を示している。
本稿では,カテゴリ理論の観点から,インテリジェンスのためのコーディングの新たな問題を提案する。
論文 参考訳(メタデータ) (2024-07-01T07:05:44Z) - Interactive-KBQA: Multi-Turn Interactions for Knowledge Base Question Answering with Large Language Models [7.399563588835834]
Interactive-KBQAは知識ベース(KB)との直接インタラクションを通じて論理形式を生成するように設計されたフレームワークである
提案手法は,WebQuestionsSP, ComplexWebQuestions, KQA Pro, MetaQAデータセット上での競合結果を実現する。
論文 参考訳(メタデータ) (2024-02-23T06:32:18Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
CoT(Chain-of- Thought)は、言語モデルのプロンプトとして、推論タスク全体で素晴らしいパフォーマンスを示す。
そこで本稿では,大規模言語モデルの推論プロセスを自動的にガイドする,新たなプロンプト手法であるアナログプロンプトを導入する。
論文 参考訳(メタデータ) (2023-10-03T00:57:26Z) - Conjunctive Query Based Constraint Solving For Feature Model
Configuration [79.14348940034351]
本稿では、制約満足度問題を解決するために共役クエリーを適用する方法を示す。
このアプローチは、構成タスクを解決するために、広範囲のデータベース技術の応用を可能にする。
論文 参考訳(メタデータ) (2023-04-26T10:08:07Z) - Tools and Methodologies for Verifying Answer Set Programs [0.0]
ASP.NETは強力な宣言型プログラミングパラダイムで、検索と最適化の課題を解決するのによく使われます。
知識表現と推論へのアプローチとして、ASPはその単純さ、簡潔さ、厳密に定義されたセマンティクスから恩恵を受ける。
私の研究は、ASPプロガムの検証をサポートする理論とツールの拡張に関するものです。
論文 参考訳(メタデータ) (2022-08-05T10:50:21Z) - Efficient lifting of symmetry breaking constraints for complex
combinatorial problems [9.156939957189502]
この作業は、Answer Set Programmingのためのモデルベースのアプローチの学習フレームワークと実装を拡張します。
Inductive Logic Programming System ILASPに新たなコンフリクト解析アルゴリズムを組み込む。
論文 参考訳(メタデータ) (2022-05-14T20:42:13Z) - Logically Consistent Adversarial Attacks for Soft Theorem Provers [110.17147570572939]
本稿では,言語モデルの推論能力の探索と改善のための生成的逆説フレームワークを提案する。
我々のフレームワークは、敵の攻撃をうまく発生させ、グローバルな弱点を識別する。
有効探索に加えて, 生成したサンプルのトレーニングにより, 対象モデルの性能が向上することを示す。
論文 参考訳(メタデータ) (2022-04-29T19:10:12Z) - On the Configuration of More and Less Expressive Logic Programs [11.331373810571993]
SATとASPの2つのよく知られたモデルベースAI手法は、入力を特徴付けるかもしれない多くの構文的特徴を定義する。
各競合から抽出したSATドメインとASPドメインに関する広範な実験的分析の結果は、入力の再構成と構成を用いて得られる様々な利点を示している。
論文 参考訳(メタデータ) (2022-03-02T10:55:35Z) - AR-LSAT: Investigating Analytical Reasoning of Text [57.1542673852013]
テキストの分析的推論の課題を研究し、1991年から2016年までのロースクール入学試験からの質問からなる新しいデータセットを紹介します。
我々は,この課題をうまくこなすために必要な知識理解と推論能力を分析する。
論文 参考訳(メタデータ) (2021-04-14T02:53:32Z) - BARD: A structured technique for group elicitation of Bayesian networks
to support analytic reasoning [2.30529156118173]
BARD (Bayesian ARgumentation via Delphi) は方法論とエキスパートシステムである。
BNの専門知識を持たないグループが問題を理解し分析するための、オンライントレーニングを備えたエンドツーエンドのオンラインプラットフォームである。
最初の実験結果は、BARDが問題解決、推論、コラボレーションを支援することを示している。
論文 参考訳(メタデータ) (2020-03-02T21:55:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。