論文の概要: CAMP: Continuous and Adaptive Learning Model in Pathology
- arxiv url: http://arxiv.org/abs/2407.09030v1
- Date: Fri, 12 Jul 2024 06:45:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 00:26:50.031507
- Title: CAMP: Continuous and Adaptive Learning Model in Pathology
- Title(参考訳): CAMP: 病理学における継続的かつ適応的な学習モデル
- Authors: Anh Tien Nguyen, Keunho Byeon, Kyungeun Kim, Boram Song, Seoung Wan Chae, Jin Tae Kwak,
- Abstract要約: 病理画像分類のためのCAMPにおける連続的適応学習モデルを提案する。
CAMPは生成的、効率的、適応的な分類モデルであり、任意の分類タスクに継続的に適応することができる。
我々はCAMPを17の分類タスクに対して,1,171,526のパッチと11,811の病理スライドを含む22のデータセットで評価した。
- 参考スコア(独自算出の注目度): 4.0422818386776855
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There exist numerous diagnostic tasks in pathology. Conventional computational pathology formulates and tackles them as independent and individual image classification problems, thereby resulting in computational inefficiency and high costs. To address the challenges, we propose a generic, unified, and universal framework, called a continuous and adaptive learning model in pathology (CAMP), for pathology image classification. CAMP is a generative, efficient, and adaptive classification model that can continuously adapt to any classification task by leveraging pathology-specific prior knowledge and learning taskspecific knowledge with minimal computational cost and without forgetting the knowledge from the existing tasks. We evaluated CAMP on 22 datasets, including 1,171,526 patches and 11,811 pathology slides, across 17 classification tasks. CAMP achieves state-of-theart classification performance on a wide range of datasets and tasks at both patch- and slide-levels and reduces up to 94% of computation time and 85% of storage memory in comparison to the conventional classification models. Our results demonstrate that CAMP can offer a fundamental transformation in pathology image classification, paving the way for the fully digitized and computerized pathology practice.
- Abstract(参考訳): 病理には多くの診断課題がある。
従来の計算病理学は、それらを独立および個別の画像分類問題として定式化し、それによって計算の非効率性と高いコストをもたらす。
この課題に対処するために,病理画像分類のための連続的適応学習モデル (CAMP) と呼ばれる汎用的,統一的,普遍的なフレームワークを提案する。
CAMPは、どんな分類タスクにも継続的に適応できる生成的、効率的、適応的な分類モデルであり、病理学固有の事前知識を活用し、タスク固有の知識を最小の計算コストで学習し、既存のタスクからの知識を忘れることなく得る。
我々はCAMPを17の分類タスクに対して,1,171,526のパッチと11,811の病理スライドを含む22のデータセットで評価した。
CAMPは、パッチレベルとスライドレベルの両方で、幅広いデータセットとタスクに対して最先端の分類性能を達成し、従来の分類モデルと比較して、計算時間の94%とストレージメモリの85%を削減した。
以上の結果から,CAMPは画像分類の根本的な変換を図り,完全にデジタル化されコンピュータ化された病理学の実践の道を開くことができることが示された。
関連論文リスト
- GPC: Generative and General Pathology Image Classifier [2.6954348706500766]
本稿では,GPCと呼ばれるタスク依存型画像分類器を提案する。
GPCは、病理画像を高次元の特徴空間にマッピングし、テキストとして関連するクラスラベルを生成する。
我々は,4つの病理画像分類タスクに対して,GPCを6つのデータセットで評価した。
論文 参考訳(メタデータ) (2024-07-12T06:54:31Z) - Knowledge-enhanced Visual-Language Pretraining for Computational Pathology [68.6831438330526]
本稿では,公共資源から収集した大規模画像テキストペアを利用した視覚的表現学習の課題について考察する。
ヒト32組織から病理診断を必要とする4,718の疾患に対して50,470個の情報属性からなる病理知識ツリーをキュレートする。
すべてのコード、モデル、そして病理知識ツリーは、研究コミュニティにリリースされます。
論文 参考訳(メタデータ) (2024-04-15T17:11:25Z) - Fairness Evolution in Continual Learning for Medical Imaging [47.52603262576663]
医用画像の分類性能に関する連続学習戦略(CL)の行動について検討した。
我々は,リプレイ,フォーッティングなし学習(LwF),LwF,Pseudo-Label戦略を評価した。
LwF と Pseudo-Label は最適な分類性能を示すが、評価に公正度の測定値を含めると、Pseudo-Label がバイアスが少ないことは明らかである。
論文 参考訳(メタデータ) (2024-04-10T09:48:52Z) - A General-Purpose Self-Supervised Model for Computational Pathology [9.505290216109609]
UNIは,10万以上の診断ヘマトキシリンおよびエオシンWSIから1億以上の組織パッチを事前訓練した,病理の汎用的自己管理モデルである。
CPathにおける新しいモデリング機能として,分解能診断組織分類,数発のクラスプロトタイプを用いたスライド分類,最大108種類のがんの分類における疾患サブタイプ一般化などを紹介した。
論文 参考訳(メタデータ) (2023-08-29T17:52:10Z) - Significantly improving zero-shot X-ray pathology classification via
fine-tuning pre-trained image-text encoders [51.14431540035141]
下流のゼロショット病理分類性能を改善するために,文サンプリングと正対損失緩和に基づく新たな微調整手法を提案する。
4種類の胸部X線データセットを用いてゼロショット病理分類性能を劇的に改善した。
論文 参考訳(メタデータ) (2022-12-14T06:04:18Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
CAD(Computer-Aided Diagnosis)では、従来の分類モデルでは、主に1つのネットワークを使って特徴を抽出する。
本稿では良性病変と悪性病変のバイナリ分類のための画像レベルラベルに基づく深層アンサンブルモデルを提案する。
結果: アンサンブルネットワークモデルにおいて、画像レベルのバイナリ分類は9,8.90%の精度を達成する。
論文 参考訳(メタデータ) (2022-04-18T13:31:53Z) - Medical Knowledge-Guided Deep Learning for Imbalanced Medical Image
Classification [3.9745217005532183]
モデルの性能を高めるために,医療知識に基づく一級分類手法を提案する。
不均衡画像分類のための深層学習に基づく一クラス分類パイプラインを設計する。
6つの最先端手法と比較して,優れたモデル性能を示す。
論文 参考訳(メタデータ) (2021-11-20T16:14:19Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
胸部X線画像から胸部疾患を自動分類するためのCAN(Cross-Attention Networks)を提案する。
また,クロスエントロピー損失を超える新たな損失関数を設計し,クラス間の不均衡を克服する。
論文 参考訳(メタデータ) (2020-07-21T14:37:00Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z) - Data Efficient and Weakly Supervised Computational Pathology on Whole
Slide Images [4.001273534300757]
計算病理学は、客観的診断、治療反応予測、臨床関連性の新たな形態学的特徴の同定を可能にする可能性がある。
ディープラーニングベースの計算病理学アプローチでは、完全に教師された設定でギガピクセル全体のスライド画像(WSI)のマニュアルアノテーションを必要とするか、弱い教師付き設定でスライドレベルのラベルを持つ何千ものWSIを必要とする。
ここでは、クラスタリングに制約のある複数のインスタンス学習について紹介する。
論文 参考訳(メタデータ) (2020-04-20T23:00:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。