論文の概要: BKDSNN: Enhancing the Performance of Learning-based Spiking Neural Networks Training with Blurred Knowledge Distillation
- arxiv url: http://arxiv.org/abs/2407.09083v1
- Date: Fri, 12 Jul 2024 08:17:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 00:17:04.543725
- Title: BKDSNN: Enhancing the Performance of Learning-based Spiking Neural Networks Training with Blurred Knowledge Distillation
- Title(参考訳): BKDSNN: 知識蒸留による学習型スパイクニューラルネットワークトレーニングの性能向上
- Authors: Zekai Xu, Kang You, Qinghai Guo, Xiang Wang, Zhezhi He,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、生物学的ニューラルネットワークを模倣し、離散スパイクを介して情報を伝達する。
本研究は,静的およびニューロモルフィックなデータセット上でSNNをトレーニングするための最先端性能を実現する。
- 参考スコア(独自算出の注目度): 20.34272550256856
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spiking neural networks (SNNs), which mimic biological neural system to convey information via discrete spikes, are well known as brain-inspired models with excellent computing efficiency. By utilizing the surrogate gradient estimation for discrete spikes, learning-based SNN training methods that can achieve ultra-low inference latency (number of time-step) emerge recently. Nevertheless, due to the difficulty in deriving precise gradient estimation for discrete spikes using learning-based method, a distinct accuracy gap persists between SNN and its artificial neural networks (ANNs) counterpart. To address the aforementioned issue, we propose a blurred knowledge distillation (BKD) technique, which leverages random blurred SNN feature to restore and imitate the ANN feature. Note that, our BKD is applied upon the feature map right before the last layer of SNN, which can also mix with prior logits-based knowledge distillation for maximized accuracy boost. To our best knowledge, in the category of learning-based methods, our work achieves state-of-the-art performance for training SNNs on both static and neuromorphic datasets. On ImageNet dataset, BKDSNN outperforms prior best results by 4.51% and 0.93% with the network topology of CNN and Transformer respectively.
- Abstract(参考訳): 生物学的ニューラルネットワークを模倣して離散スパイクを介して情報を伝達するスパイキングニューラルネットワーク(SNN)は、優れた計算効率を持つ脳にインスパイアされたモデルとしてよく知られている。
離散スパイクに対する代理勾配推定を利用して、超低推論遅延(時間ステップ数)を達成する学習ベースのSNNトレーニング手法が最近出現している。
それでも、離散スパイクの正確な勾配推定を学習ベース手法で導き出すことが難しいため、SNNとその人工知能ニューラルネットワーク(ANN)間では、明確な精度のギャップが持続する。
上記の問題に対処するために,ランダムなぼやけたSNN機能を活用してANN機能を復元・模倣する,ぼやけた知識蒸留(BKD)手法を提案する。
なお, 我々のBKDは, SNNの最終層直前の機能マップに適用されており, 従来のロジットに基づく知識蒸留と組み合わせることで, 精度を最大化することができる。
我々の知る限り、学習に基づく手法のカテゴリでは、静的およびニューロモルフィックなデータセット上でSNNをトレーニングするための最先端のパフォーマンスを達成する。
ImageNetデータセットでは、BKDSNNは、CNNとTransformerのネットワークトポロジでそれぞれ4.51%、0.93%の先行結果を上回っている。
関連論文リスト
- Training Spiking Neural Networks via Augmented Direct Feedback Alignment [3.798885293742468]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックデバイスにニューラルネットワークを実装するための有望なソリューションである。
しかし、SNNニューロンの非分化性は、それらを訓練することを困難にしている。
本稿では、ランダムなプロジェクションに基づく勾配のないアプローチである拡張直接フィードバックアライメント(aDFA)を用いてSNNの訓練を行う。
論文 参考訳(メタデータ) (2024-09-12T06:22:44Z) - High-performance deep spiking neural networks with 0.3 spikes per neuron [9.01407445068455]
バイオインスパイアされたスパイクニューラルネットワーク(SNN)を人工ニューラルネットワーク(ANN)より訓練することは困難である
深部SNNモデルのトレーニングは,ANNと全く同じ性能が得られることを示す。
我々のSNNは1ニューロンあたり0.3スパイク以下で高性能な分類を行い、エネルギー効率の良い実装に役立てる。
論文 参考訳(メタデータ) (2023-06-14T21:01:35Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Constructing Deep Spiking Neural Networks from Artificial Neural
Networks with Knowledge Distillation [20.487853773309563]
スパイキングニューラルネットワーク(SNN)は、高い計算効率を持つ脳にインスパイアされたモデルとしてよく知られている。
知識蒸留(KD)を用いた深部SNNモデル構築手法を提案する。
論文 参考訳(メタデータ) (2023-04-12T05:57:21Z) - PC-SNN: Supervised Learning with Local Hebbian Synaptic Plasticity based
on Predictive Coding in Spiking Neural Networks [1.6172800007896282]
本稿では,予測符号化理論に触発された新しい学習アルゴリズムを提案する。
教師あり学習を完全自律的に行うことができ、バックプロップとして成功することを示す。
この手法は,最先端の多層SNNと比較して,良好な性能を実現する。
論文 参考訳(メタデータ) (2022-11-24T09:56:02Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
我々は、ニューラルネットワークに事前論理的知識を注入するニューラルネットワークアーキテクチャであるKENNに焦点を当てる。
本稿では,関係データに対するKENNの拡張を提案する。
論文 参考訳(メタデータ) (2022-05-31T13:00:34Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Mining the Weights Knowledge for Optimizing Neural Network Structures [1.995792341399967]
タスク固有のニューラルネットワーク(略してTNN)の重みを入力として使用するスイッチャーニューラルネットワーク(SNN)を導入する。
重みに含まれる知識をマイニングすることで、SNNはTNNのニューロンをオフにするスケーリング因子を出力する。
精度の面では,ベースラインネットワークやその他の構造学習手法を安定的に,かつ著しく上回っている。
論文 参考訳(メタデータ) (2021-10-11T05:20:56Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。