Second-Order Coherence as an Indicator of Quantum Entanglement of Hawking Radiation in Moving-Mirror Models
- URL: http://arxiv.org/abs/2407.09218v1
- Date: Fri, 12 Jul 2024 12:30:20 GMT
- Title: Second-Order Coherence as an Indicator of Quantum Entanglement of Hawking Radiation in Moving-Mirror Models
- Authors: Masanori Tomonaga, Yasusada Nambu,
- Abstract summary: We evaluate the second-order coherence in the context of the moving-mirror model, which serves as an analog model for Hawking radiation from a black hole.
We discuss the relation between entanglement and the second-order coherence of Hawking radiation paying attention to the noise effect due to the thermality of Hawking radiation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The second-order coherence of light is a widely recognized physical quantity used to assess the quantum characteristics of light, and its properties have been extensively investigated in the field of quantum optics. Recently, it has been proposed that second-order coherence can be utilized as an indicator of quantum entanglement. In this study, we evaluated the second-order coherence in the context of the moving-mirror model, which serves as an analog model for Hawking radiation from a black hole. We discuss the relation between entanglement and the second-order coherence of Hawking radiation paying attention to the noise effect due to the thermality of Hawking radiation, which reduces the quantum correlation in the entanglement-harvesting protocol with two-qubit detectors.
Related papers
- Maximal steered coherence in the background of Schwarzschild space-time [9.092982651471674]
We find that as the Hawking temperature increases, the physically accessible MSC degrades while the unaccessible MSC increases.
Our findings illuminate the intricate dynamics of quantum information in the vicinity of black holes.
arXiv Detail & Related papers (2024-08-22T13:40:33Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Creating mirror-mirror quantum correlations in optomechanics [0.0]
We study the transfer of quantum correlations between two movable mirrors of two Fabry-P'erot cavities separated via broadband squeezed light and coupled via photon hopping process.
arXiv Detail & Related papers (2023-08-11T02:38:26Z) - Quantification of Quantum Correlations in Two-Beam Gaussian States Using
Photon-Number Measurements [0.0]
We implement a general method to quantify various forms of quantum correlations using solely the experimental intensity moments up to the fourth order.
This is possible as these moments allow for an exact determination of the global and marginal impurities of two-beam Gaussian fields.
arXiv Detail & Related papers (2022-09-12T17:28:22Z) - Quantifying quantum correlations in noisy Gaussian channels [0.0]
We describe a scheme that aims to specify and examine the dynamic evolution of the quantum correlations in two-modes Gaussian states.
We show that the Gaussian interferometric power is a measurement quantifier that can capture the essential quantum correlations beyond quantum entanglement.
arXiv Detail & Related papers (2022-07-26T11:34:35Z) - Exploring quantum correlations in a hybrid optomechanical system [0.0]
We propose a scheme of two coupled optomechanical cavities to enhance the intracavity entanglement.
Photon hopping is employed to establish couplings between optical modes, while phonon is utilized to establish couplings between mechanical tunneling resonators.
arXiv Detail & Related papers (2022-04-16T08:47:50Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Mid-infrared homodyne balanced detector for quantum light
characterization [52.77024349608834]
We present the characterization of a novel balanced homodyne detector operating in the mid-infrared.
We discuss the experimental results with a view to possible applications to quantum technologies, such as free-space quantum communication.
arXiv Detail & Related papers (2021-03-16T11:08:50Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.