Quantum Features of the Thermal Two-Qubit Quantum Rabi Model in Ultra- and Deep-Strong Regimes
- URL: http://arxiv.org/abs/2503.23654v1
- Date: Mon, 31 Mar 2025 01:38:16 GMT
- Title: Quantum Features of the Thermal Two-Qubit Quantum Rabi Model in Ultra- and Deep-Strong Regimes
- Authors: Ciro Micheletti Diniz, Gabriella G. Damas, Norton G. de Almeida, Celso J. Villas Boas, G. D. de Moraes Neto,
- Abstract summary: Two-qubit quantum Rabi model (2QQRM) describes two qubits coupled to a single bosonic mode.<n>In this work, we investigate the persistence of quantum correlations and non-classical states in the 2QQRM at thermal equilibrium.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum correlations and non-classical states are indispensable resources for advancing quantum technologies, and their resilience at finite temperatures is crucial for practical experimental implementations. The two-qubit quantum Rabi model (2QQRM), a natural extension of the quantum Rabi model, describes two qubits coupled to a single bosonic mode and has been extensively studied in cavity quantum electrodynamics, superconducting circuits, and quantum information science. In this work, we investigate the persistence of quantum correlations and non-classical states in the 2QQRM at thermal equilibrium, focusing on the ultrastrong and deep strong coupling regimes. Through a systematic analysis of quantumness quantifiers, we demonstrate the emergence of long-lived quantum correlations, even in the presence of thermal noise. Notably, we uncover striking phenomena arising from the interplay between detuning and deep strong-coupling: in the high-frequency limit, where the qubit energy exceeds the cavity-mode energy, quantum criticality emerges, leading to a high degree of photon squeezing. In contrast, the opposite regime is characterized by robust qubit-qubit quantum correlations. Importantly, we show that both dispersive regimes exhibit quantum features that are remarkably robust to parameter fluctuations, making them advantageous for maintaining quantum coherence. These results highlight the exceptional resilience of quantum resources in the 2QQRM and provide valuable insights for developing quantum technologies operating under realistic, finite-temperature conditions.
Related papers
- Quantum non-Gaussian coherences of an oscillating atom [0.0]
Even the most elementary binary superpositions of the ground and the higher eigenstate are highly required for quantum sensing, thermodynamics, and computing.
We derive upper bounds for quantum coherences achieved by classical and Gaussian states and operations.
We experimentally demonstrate unambiguous observation of quantum non-Gaussian coherences in mechanical vibrations.
arXiv Detail & Related papers (2024-12-12T13:03:10Z) - Quantum correlations enhanced in hybrid optomechanical system via phase tuning [0.0]
This work presents a theoretical framework for enhancing quantum correlations in a hybrid double-cavity optomechanical system.<n>We find that tuning the phase $phi$ is essential for maximizing photon-phonon entanglement.
arXiv Detail & Related papers (2024-10-13T14:11:07Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Persisting quantum effects in the anisotropic Rabi model at thermal
equilibrium [0.0]
We study the long-lived quantum correlations and nonclassical states generated in the anisotropic Rabi model.
We demonstrate a stark distinction between virtual excitations produced beyond the strong coupling regime and the quantumness quantifiers once the light-matter interaction has been switched off.
arXiv Detail & Related papers (2023-09-05T10:59:32Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Stable Quantum-Correlated Many Body States through Engineered Dissipation [0.6491408057780899]
We prepare low-energy states of the transverse-field Ising model using up to 49 superconducting qubits.
In one dimension, we observed long-range quantum correlations and a ground-state fidelity of 0.86 for 18 qubits at the critical point.
Our results establish engineered dissipation as a scalable alternative to unitary evolution for preparing entangled many-body states on noisy quantum processors.
arXiv Detail & Related papers (2023-04-26T23:51:27Z) - Quantum Thermal State Preparation [39.91303506884272]
We introduce simple continuous-time quantum Gibbs samplers for simulating quantum master equations.
We construct the first provably accurate and efficient algorithm for preparing certain purified Gibbs states.
Our algorithms' costs have a provable dependence on temperature, accuracy, and the mixing time.
arXiv Detail & Related papers (2023-03-31T17:29:56Z) - An Overview: Steady-State Quantum Entanglement via Reservoir Engineering [0.0]
In addition to the focus on quantum entanglement stabilization, we briefly discuss the same objective for steady-state quantum coherence.
The overview classifies the approaches into two main categories: hybrid drive and dissipation methods and purely dissipative schemes.
arXiv Detail & Related papers (2023-03-01T13:26:05Z) - Simulating Chern insulators on a superconducting quantum processor [24.532662078542266]
We experimentally demonstrate three types of Chern insulators with synthetic dimensions on a programable 30-qubit-ladder superconducting processor.
Our work shows the potential of using superconducting qubits for investigating different intriguing topological phases of quantum matter.
arXiv Detail & Related papers (2022-07-24T19:28:23Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Dynamic sensitivity of quantum Rabi model with quantum criticality [6.082805992647198]
This sensitivity can be detected by introducing an auxiliary two-level atom far-off-resonantly coupled to the cavity field of the quantum Rabi model.
We find that when the quantum Rabi model goes through the critical point, the auxiliary atom experiences a sudden decoherence, which can be characterised by a sharp decay of the Loschmidt echo.
arXiv Detail & Related papers (2021-01-05T13:41:50Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.