論文の概要: 3DGS.zip: A survey on 3D Gaussian Splatting Compression Methods
- arxiv url: http://arxiv.org/abs/2407.09510v3
- Date: Tue, 3 Sep 2024 11:54:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 17:21:21.141764
- Title: 3DGS.zip: A survey on 3D Gaussian Splatting Compression Methods
- Title(参考訳): 3DGS.zip:3次元ガウス散乱圧縮法に関する調査
- Authors: Milena T. Bagdasarian, Paul Knoll, Florian Barthel, Anna Hilsmann, Peter Eisert, Wieland Morgenstern,
- Abstract要約: 本稿では,3次元ガウススプラッティング圧縮法について,様々なベンチマークにおける統計的性能に着目して検討する。
評価されたデータセットには、TurpsAndTemples、MipNeRF360、DeepBlending、SyntheticNeRFがある。
各手法について,Pak Signal-to-Noise Ratio (PSNR), Structure similarity Index (SSIM), Learned Perceptual Image Patch similarity (LPIPS)を報告する。
- 参考スコア(独自算出の注目度): 9.720459793032898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a work-in-progress survey on 3D Gaussian Splatting compression methods, focusing on their statistical performance across various benchmarks. This survey aims to facilitate comparability by summarizing key statistics of different compression approaches in a tabulated format. The datasets evaluated include TanksAndTemples, MipNeRF360, DeepBlending, and SyntheticNeRF. For each method, we report the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Learned Perceptual Image Patch Similarity (LPIPS), and the resultant size in megabytes (MB), as provided by the respective authors. This is an ongoing, open project, and we invite contributions from the research community as GitHub issues or pull requests. Please visit http://w-m.github.io/3dgs-compression-survey/ for more information and a sortable version of the table.
- Abstract(参考訳): 本稿では,3次元ガウススプラッティング圧縮法について,様々なベンチマークにおける統計的性能に着目して検討する。
本調査は,異なる圧縮手法の鍵となる統計データを表形式で要約することにより,可読性の向上を目的とする。
評価されたデータセットには、TurpsAndTemples、MipNeRF360、DeepBlending、SyntheticNeRFがある。
各手法について,各著者が提案するPak Signal-to-Noise Ratio (PSNR), Structure similarity Index (SSIM), Learned Perceptual Image Patch similarity (LPIPS), and the resultant size in megabytes (MB)について報告する。
これは進行中のオープンソースプロジェクトであり、GitHubの問題やプルリクエストとして、リサーチコミュニティからのコントリビューションを募集しています。
詳細はhttp://w-m.github.io/3dgs-compression-survey/を参照してください。
関連論文リスト
- HyperGS: Hyperspectral 3D Gaussian Splatting [13.07553815605148]
ハイパースペクトルノベルビュー合成(HNVS)のための新しいフレームワークであるHyperGSを紹介する。
提案手法は,多視点3次元ハイパースペクトルデータセットから材料特性を符号化することで,空間・スペクトルの同時レンダリングを可能にする。
これまでに公表されたモデルに対して14dbの精度向上を図り、実・模擬ハイパースペクトルシーンを広範囲に評価することで、HyperGSのロバスト性を実証する。
論文 参考訳(メタデータ) (2024-12-17T12:23:07Z) - Temporally Compressed 3D Gaussian Splatting for Dynamic Scenes [46.64784407920817]
時間圧縮3Dガウススティング(TC3DGS)は動的3Dガウス表現を圧縮する新しい技術である。
複数のデータセットにまたがる実験により、T3DGSは最大67$times$圧縮を実現し、視覚的品質の劣化を最小限に抑えることができた。
論文 参考訳(メタデータ) (2024-12-07T17:03:09Z) - TranSplat: Generalizable 3D Gaussian Splatting from Sparse Multi-View Images with Transformers [14.708092244093665]
我々は,正確な局所特徴マッチングを導くために,予測深度信頼マップを利用する戦略を開発する。
本稿では,RealEstate10KベンチマークとACIDベンチマークの両方で最高の性能を示すTranSplatという新しいG-3DGS手法を提案する。
論文 参考訳(メタデータ) (2024-08-25T08:37:57Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
本研究では,視覚的忠実度と前景の細部を高い圧縮比で保持する原理的感度プルーニングスコアを提案する。
また,トレーニングパイプラインを変更することなく,事前訓練した任意の3D-GSモデルに適用可能な複数ラウンドプルーファインパイプラインを提案する。
論文 参考訳(メタデータ) (2024-06-14T17:53:55Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
本研究では,シーンの形状を暗黙的に符号化する構造認識型ガウス散乱法(SAGS)を提案する。
SAGSは、最先端のレンダリング性能と、ベンチマークノベルビュー合成データセットのストレージ要件の削減を反映している。
論文 参考訳(メタデータ) (2024-04-29T23:26:30Z) - CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting [68.94594215660473]
Compressed Gaussian Splatting (CompGS) という,効率的な3次元シーン表現を提案する。
我々は少数のアンカープリミティブを予測に利用し、プリミティブの大多数を非常にコンパクトな残留形にカプセル化することができる。
実験の結果,提案手法は既存の手法よりも優れており,モデル精度とレンダリング品質を損なうことなく,3次元シーン表現のコンパクト性に優れていた。
論文 参考訳(メタデータ) (2024-04-15T04:50:39Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition [66.56357905500512]
3Dガウススプラッティングは、新しいビュー合成のための代替の3D表現として登場した。
SAGDは3D-GSのための概念的にシンプルで効果的な境界拡張パイプラインである。
提案手法は粗い境界問題なく高品質な3Dセグメンテーションを実現し,他のシーン編集作業にも容易に適用できる。
論文 参考訳(メタデータ) (2024-01-31T14:19:03Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。