Optimized 3D Point Labeling with Leaders Using the Beams Displacement Method
- URL: http://arxiv.org/abs/2407.09552v2
- Date: Thu, 12 Dec 2024 11:03:20 GMT
- Title: Optimized 3D Point Labeling with Leaders Using the Beams Displacement Method
- Authors: Zhiwei Wei, Nai Yang, Wenjia Xu, Su Ding, Li Minmin, Li You, Guo Renzhong,
- Abstract summary: Leadered labels have a large degree of freedom in position con-figuration.<n>We conceptualize the dynamic configuration process of computing label positions as akin to solving a map displacement problem.
- Score: 14.377997862577182
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In three-dimensional geographical scenes, adding labels with leader lines to point features can significantly improve their visibility. Leadered labels have a large degree of freedom in position con-figuration, but existing methods are mostly based on limited position candidate models, which not only fail to effectively utilize the map space but also make it difficult to consider the relative relationships between labels. Therefore, we conceptualize the dynamic configuration process of computing label positions as akin to solving a map displacement problem. We use a triangulated graph to delineate spatial relationships among labels and calculate the forces exerted on labels considering the constraints associated with point feature labels. Then we use the Beams Displacement Method to iteratively calculate new positions for the labels. Our experimental outcomes demonstrate that this method effectively mitigates label overlay issues while maintaining minimal average directional deviation between adjacent labels. Furthermore, this method is adaptable to various types of leader line labels. Meanwhile, we also discuss the block processing strategy to improve the efficiency of label configuration and analyze the impact of different proximity graphs.
Related papers
- Online Multi-Label Classification under Noisy and Changing Label Distribution [9.17381554071824]
We propose an online multi-label classification algorithm under Noisy and Changing Label Distribution (NCLD)
The objective is to simultaneously model the label scoring and the label ranking for high accuracy, whose robustness to NCLD benefits from three novel works.
arXiv Detail & Related papers (2024-10-03T11:16:43Z) - Towards Modality-agnostic Label-efficient Segmentation with Entropy-Regularized Distribution Alignment [62.73503467108322]
This topic is widely studied in 3D point cloud segmentation due to the difficulty of annotating point clouds densely.
Until recently, pseudo-labels have been widely employed to facilitate training with limited ground-truth labels.
Existing pseudo-labeling approaches could suffer heavily from the noises and variations in unlabelled data.
We propose a novel learning strategy to regularize the pseudo-labels generated for training, thus effectively narrowing the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2024-08-29T13:31:15Z) - You can't handle the (dirty) truth: Data-centric insights improve pseudo-labeling [60.27812493442062]
We show the importance of investigating labeled data quality to improve any pseudo-labeling method.
Specifically, we introduce a novel data characterization and selection framework called DIPS to extend pseudo-labeling.
We demonstrate the applicability and impact of DIPS for various pseudo-labeling methods across an extensive range of real-world datasets.
arXiv Detail & Related papers (2024-06-19T17:58:40Z) - Inaccurate Label Distribution Learning with Dependency Noise [52.08553913094809]
We introduce the Dependent Noise-based Inaccurate Label Distribution Learning (DN-ILDL) framework to tackle the challenges posed by noise in label distribution learning.
We show that DN-ILDL effectively addresses the ILDL problem and outperforms existing LDL methods.
arXiv Detail & Related papers (2024-05-26T07:58:07Z) - Towards Imbalanced Large Scale Multi-label Classification with Partially
Annotated Labels [8.977819892091]
Multi-label classification is a widely encountered problem in daily life, where an instance can be associated with multiple classes.
In this work, we address the issue of label imbalance and investigate how to train neural networks using partial labels.
arXiv Detail & Related papers (2023-07-31T21:50:48Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
Pseudo-labels are widely employed in weakly supervised 3D segmentation tasks where only sparse ground-truth labels are available for learning.
We propose a novel learning strategy to regularize the generated pseudo-labels and effectively narrow the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2023-05-25T08:19:31Z) - Graph Attention Transformer Network for Multi-Label Image Classification [50.0297353509294]
We propose a general framework for multi-label image classification that can effectively mine complex inter-label relationships.
Our proposed methods can achieve state-of-the-art performance on three datasets.
arXiv Detail & Related papers (2022-03-08T12:39:05Z) - PointMatch: A Consistency Training Framework for Weakly Supervised
Semantic Segmentation of 3D Point Clouds [117.77841399002666]
We propose a novel framework, PointMatch, that stands on both data and label, by applying consistency regularization to sufficiently probe information from data itself.
The proposed PointMatch achieves the state-of-the-art performance under various weakly-supervised schemes on both ScanNet-v2 and S3DIS datasets.
arXiv Detail & Related papers (2022-02-22T07:26:31Z) - Why Propagate Alone? Parallel Use of Labels and Features on Graphs [42.01561812621306]
Graph neural networks (GNNs) and label propagation represent two interrelated modeling strategies designed to exploit graph structure in tasks such as node property prediction.
We show that a label trick can be reduced to an interpretable, deterministic training objective composed of two factors.
arXiv Detail & Related papers (2021-10-14T07:34:11Z) - Adaptive Label Smoothing To Regularize Large-Scale Graph Training [46.00927775402987]
We propose the adaptive label smoothing (ALS) method to replace the one-hot hard labels with smoothed ones.
ALS propagates node labels to aggregate the neighborhood label distribution in a pre-processing step, and then updates the optimal smoothed labels online to adapt to specific graph structure.
arXiv Detail & Related papers (2021-08-30T23:51:31Z) - Learning Soft Labels via Meta Learning [3.4852307714135375]
One-hot labels do not represent soft decision boundaries among concepts, and hence, models trained on them are prone to overfitting.
We propose a framework, where we treat the labels as learnable parameters, and optimize them along with model parameters.
We show that learned labels capture semantic relationship between classes, and thereby improve teacher models for the downstream task of distillation.
arXiv Detail & Related papers (2020-09-20T18:42:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.