Edge AI-Enabled Chicken Health Detection Based on Enhanced FCOS-Lite and Knowledge Distillation
- URL: http://arxiv.org/abs/2407.09562v3
- Date: Tue, 5 Nov 2024 06:35:52 GMT
- Title: Edge AI-Enabled Chicken Health Detection Based on Enhanced FCOS-Lite and Knowledge Distillation
- Authors: Qiang Tong, Jinrui Wang, Wenshuang Yang, Songtao Wu, Wenqi Zhang, Chen Sun, Kuanhong Xu,
- Abstract summary: AIoT technology has become a crucial trend in modern poultry management, offering the potential to optimize farming operations and reduce human workloads.
This paper presents a real-time and compact edge-AI enabled detector designed to identify chickens and their healthy statuses using frames captured by a lightweight and intelligent camera equipped with an edge-AI enabled CMOS sensor.
- Score: 10.91854762223235
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The utilization of AIoT technology has become a crucial trend in modern poultry management, offering the potential to optimize farming operations and reduce human workloads. This paper presents a real-time and compact edge-AI enabled detector designed to identify chickens and their healthy statuses using frames captured by a lightweight and intelligent camera equipped with an edge-AI enabled CMOS sensor. To ensure efficient deployment of the proposed compact detector within the memory-constrained edge-AI enabled CMOS sensor, we employ a FCOS-Lite detector leveraging MobileNet as the backbone. To mitigate the issue of reduced accuracy in compact edge-AI detectors without incurring additional inference costs, we propose a gradient weighting loss function as classification loss and introduce CIOU loss function as localization loss. Additionally, we propose a knowledge distillation scheme to transfer valuable information from a large teacher detector to the proposed FCOS-Lite detector, thereby enhancing its performance while preserving a compact model size. Experimental results demonstrate the proposed edge-AI enabled detector achieves commendable performance metrics, including a mean average precision (mAP) of 95.1$\%$ and an F1-score of 94.2$\%$, etc. Notably, the proposed detector can be efficiently deployed and operates at a speed exceeding 20 FPS on the edge-AI enabled CMOS sensor, achieved through int8 quantization. That meets practical demands for automated poultry health monitoring using lightweight intelligent cameras with low power consumption and minimal bandwidth costs.
Related papers
- Deep Learning-based Embedded Intrusion Detection System for Automotive
CAN [12.084121187559864]
Various intrusion detection approaches have been proposed to detect and tackle such threats, with machine learning models proving highly effective.
We propose a hybrid FPGA-based ECU approach that can transparently integrate IDS functionality through a dedicated off-the-shelf hardware accelerator.
Our results show that the proposed approach provides an average accuracy of over 99% across multiple attack datasets with 0.64% false detection rates.
arXiv Detail & Related papers (2024-01-19T13:13:38Z) - On-Device Soft Sensors: Real-Time Fluid Flow Estimation from Level Sensor Data [19.835810073852244]
Instead of deploying soft sensors on the Cloud, this study shift towards employing on-device soft sensors, promising heightened efficiency and bolstering data security.
Our approach substantially improves energy efficiency by deploying Artificial Intelligence (AI) directly on devices within a wireless sensor network.
arXiv Detail & Related papers (2023-11-25T14:18:29Z) - Enhancing Lightweight Neural Networks for Small Object Detection in IoT
Applications [1.6932009464531739]
The paper proposes a novel adaptive tiling method that can be used on top of any existing object detector.
Our experimental results show that the proposed tiling method can boost the F1-score by up to 225% while reducing the average object count error by up to 76%.
arXiv Detail & Related papers (2023-11-13T08:58:34Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Efficient Decoder-free Object Detection with Transformers [75.00499377197475]
Vision transformers (ViTs) are changing the landscape of object detection approaches.
We propose a decoder-free fully transformer-based (DFFT) object detector.
DFFT_SMALL achieves high efficiency in both training and inference stages.
arXiv Detail & Related papers (2022-06-14T13:22:19Z) - ETAD: A Unified Framework for Efficient Temporal Action Detection [70.21104995731085]
Untrimmed video understanding such as temporal action detection (TAD) often suffers from the pain of huge demand for computing resources.
We build a unified framework for efficient end-to-end temporal action detection (ETAD)
ETAD achieves state-of-the-art performance on both THUMOS-14 and ActivityNet-1.3.
arXiv Detail & Related papers (2022-05-14T21:16:21Z) - Anomaly Detection for Unmanned Aerial Vehicle Sensor Data Using a
Stacked Recurrent Autoencoder Method with Dynamic Thresholding [0.3441021278275805]
This paper proposes a system incorporating a Long Short-Term Memory (LSTM) Deep Learning Autoencoder based method with a novel dynamic thresholding algorithm and weighted loss function for anomaly detection of a UAV dataset.
The dynamic thresholding and weighted loss functions showed promising improvements to the standard static thresholding method, both in accuracy-related performance metrics and in speed of true fault detection.
arXiv Detail & Related papers (2022-03-09T14:16:14Z) - Automated Quality Control of Vacuum Insulated Glazing by Convolutional
Neural Network Image Classification [5.2183907457242915]
We develop, trained, and tested a deep learning computer vision system using convolutional neural networks.
The system flawlessly classified the test dataset with an area under the curve (AUC) for the receiver operating characteristic (ROC) of 100%.
We employ the state-of-the-art methods Grad-CAM and Score-CAM of explainable Artificial Intelligence (XAI) to provide an understanding of the internal mechanisms.
arXiv Detail & Related papers (2021-10-15T13:10:54Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
Dense optical flow estimation plays a key role in many robotic vision tasks.
Current networks often occupy large number of parameters and require heavy computation costs.
Our proposed FastFlowNet works in the well-known coarse-to-fine manner with following innovations.
arXiv Detail & Related papers (2021-03-08T03:09:37Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z) - FCOS: A simple and strong anchor-free object detector [111.87691210818194]
We propose a fully convolutional one-stage object detector (FCOS) to solve object detection in a per-pixel prediction fashion.
Almost all state-of-the-art object detectors such as RetinaNet, SSD, YOLOv3, and Faster R-CNN rely on pre-defined anchor boxes.
In contrast, our proposed detector FCOS is anchor box free, as well as proposal free.
arXiv Detail & Related papers (2020-06-14T01:03:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.