Toward Regulatory Compliance: A few-shot Learning Approach to Extract Processing Activities
- URL: http://arxiv.org/abs/2407.09592v1
- Date: Fri, 12 Jul 2024 17:56:18 GMT
- Title: Toward Regulatory Compliance: A few-shot Learning Approach to Extract Processing Activities
- Authors: Pragyan K C, Rambod Ghandiparsi, Rocky Slavin, Sepideh Ghanavati, Travis Breaux, Mitra Bokaei Hosseini,
- Abstract summary: We present a method to generate segments of RoPA from user-authored usage scenarios using large language models (LLMs)
Our findings highlight the significant influence of the number of examples in prompts on summarization F1 scores.
Our prompts achieve successful summarization of processing activities with an average 70% ROUGE-L F1 score.
- Score: 2.1903839165439845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The widespread use of mobile applications has driven the growth of the industry, with companies relying heavily on user data for services like targeted advertising and personalized offerings. In this context, privacy regulations such as the General Data Protection Regulation (GDPR) play a crucial role. One of the GDPR requirements is the maintenance of a Record of Processing Activities (RoPA) by companies. RoPA encompasses various details, including the description of data processing activities, their purposes, types of data involved, and other relevant external entities. Small app-developing companies face challenges in meeting such compliance requirements due to resource limitations and tight timelines. To aid these developers and prevent fines, we propose a method to generate segments of RoPA from user-authored usage scenarios using large language models (LLMs). Our method employs few-shot learning with GPT-3.5 Turbo to summarize usage scenarios and generate RoPA segments. We evaluate different factors that can affect few-shot learning performance consistency for our summarization task, including the number of examples in few-shot learning prompts, repetition, and order permutation of examples in the prompts. Our findings highlight the significant influence of the number of examples in prompts on summarization F1 scores, while demonstrating negligible variability in F1 scores across multiple prompt repetitions. Our prompts achieve successful summarization of processing activities with an average 70% ROUGE-L F1 score. Finally, we discuss avenues for improving results through manual evaluation of the generated summaries.
Related papers
- Scalable and Domain-General Abstractive Proposition Segmentation [20.532804009152255]
We focus on the task of abstractive proposition segmentation (APS): transforming text into simple, self-contained, well-formed sentences.
We first introduce evaluation metrics for the task to measure several dimensions of quality.
We then propose a scalable, yet accurate, proposition segmentation model.
arXiv Detail & Related papers (2024-06-28T10:24:31Z) - Instruction Tuning with Retrieval-based Examples Ranking for Aspect-based Sentiment Analysis [7.458853474864602]
Aspect-based sentiment analysis (ABSA) identifies sentiment information related to specific aspects and provides deeper market insights to businesses and organizations.
Recent studies have proposed using fixed examples for instruction tuning to reformulate ABSA as a generation task.
This study proposes an instruction learning method with retrieval-based example ranking for ABSA tasks.
arXiv Detail & Related papers (2024-05-28T10:39:10Z) - Enabling Natural Zero-Shot Prompting on Encoder Models via Statement-Tuning [55.265138447400744]
Statement-Tuning is a technique that models discriminative tasks as a set of finite statements and trains an encoder model to discriminate between the potential statements to determine the label.
Experimental results demonstrate that Statement-Tuning achieves competitive performance compared to state-of-the-art LLMs with significantly fewer parameters.
The study investigates the impact of several design choices on few-shot and zero-shot generalization, revealing that Statement-Tuning can achieve strong performance with modest training data.
arXiv Detail & Related papers (2024-04-19T14:05:03Z) - Text Summarization Using Large Language Models: A Comparative Study of
MPT-7b-instruct, Falcon-7b-instruct, and OpenAI Chat-GPT Models [0.0]
Leveraging Large Language Models (LLMs) has shown remarkable promise in enhancing summarization techniques.
This paper embarks on an exploration of text summarization with a diverse set of LLMs, including MPT-7b-instruct, falcon-7b-instruct, and OpenAI ChatGPT text-davinci-003 models.
arXiv Detail & Related papers (2023-10-16T14:33:02Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
We propose OverPrompt, leveraging the in-context learning capability of LLMs to handle multiple task inputs.
Our experiments show that OverPrompt can achieve cost-efficient zero-shot classification without causing significant detriment to task performance.
arXiv Detail & Related papers (2023-05-24T10:08:04Z) - AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators [98.11286353828525]
GPT-3.5 series models have demonstrated remarkable few-shot and zero-shot ability across various NLP tasks.
We propose AnnoLLM, which adopts a two-step approach, explain-then-annotate.
We build the first conversation-based information retrieval dataset employing AnnoLLM.
arXiv Detail & Related papers (2023-03-29T17:03:21Z) - Enriching Relation Extraction with OpenIE [70.52564277675056]
Relation extraction (RE) is a sub-discipline of information extraction (IE)
In this work, we explore how recent approaches for open information extraction (OpenIE) may help to improve the task of RE.
Our experiments over two annotated corpora, KnowledgeNet and FewRel, demonstrate the improved accuracy of our enriched models.
arXiv Detail & Related papers (2022-12-19T11:26:23Z) - CASPR: Customer Activity Sequence-based Prediction and Representation [2.0668471963669606]
We propose a novel approach to encode customer transactions into a generic representation of a customer's association with the business.
We then evaluate these embeddings as features to train multiple models spanning a variety of applications.
Our experiments at scale validate CASPR for both small & large enterprise applications.
arXiv Detail & Related papers (2022-11-16T19:46:31Z) - Instance-wise Prompt Tuning for Pretrained Language Models [72.74916121511662]
Instance-wise Prompt Tuning (IPT) is the first prompt learning paradigm that injects knowledge from the input data instances to the prompts.
IPT significantly outperforms task-based prompt learning methods, and achieves comparable performance to conventional finetuning with only 0.5% - 1.5% of tuned parameters.
arXiv Detail & Related papers (2022-06-04T10:08:50Z) - Retrieval Enhanced Data Augmentation for Question Answering on Privacy
Policies [74.01792675564218]
We develop a data augmentation framework based on ensembling retriever models that captures relevant text segments from unlabeled policy documents.
To improve the diversity and quality of the augmented data, we leverage multiple pre-trained language models (LMs) and cascade them with noise reduction filter models.
Using our augmented data on the PrivacyQA benchmark, we elevate the existing baseline by a large margin (10% F1) and achieve a new state-of-the-art F1 score of 50%.
arXiv Detail & Related papers (2022-04-19T15:45:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.