論文の概要: Free-form Grid Structure Form Finding based on Machine Learning and Multi-objective Optimisation
- arxiv url: http://arxiv.org/abs/2407.09852v1
- Date: Sat, 13 Jul 2024 11:22:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 20:37:36.836195
- Title: Free-form Grid Structure Form Finding based on Machine Learning and Multi-objective Optimisation
- Title(参考訳): 機械学習と多目的最適化に基づく自由形格子構造解析
- Authors: Yiping Meng, Yiming Sun,
- Abstract要約: 現在の自由形造形法は, 材料特性, 構造条件, 施工条件を十分に満たすことができない。
本稿では, 材料の特性と制約に則って, 複数の目的を考慮した自由形形態の合理性向上を図ることを目的とする。
- 参考スコア(独自算出の注目度): 5.381203326687129
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Free-form structural forms are widely used to design spatial structures for their irregular spatial morphology. Current free-form form-finding methods cannot adequately meet the material properties, structural requirements or construction conditions, which brings the deviation between the initial 3D geometric design model and the constructed free-form structure. Thus, the main focus of this paper is to improve the rationality of free-form morphology considering multiple objectives in line with the characteristics and constraints of material. In this paper, glued laminated timber is selected as a case. Firstly, machine learning is adopted based on the predictive capability. By selecting a free-form timber grid structure and following the principles of NURBS, the free-form structure is simplified into free-form curves. The transformer is selected to train and predict the curvatures of the curves considering the material characteristics. After predicting the curvatures, the curves are transformed into vectors consisting of control points, weights, and knot vectors. To ensure the constructability and robustness of the structure, minimising the mass of the structure, stress and strain energy are the optimisation objectives. Two parameters (weight and the z-coordinate of the control points) of the free-from morphology are extracted as the variables of the free-form morphology to conduct the optimisation. The evaluation algorithm was selected as the optimal tool due to its capability to optimise multiple parameters. While optimising the two variables, the mechanical performance evaluation indexes such as the maximum displacement in the z-direction are demonstrated in the 60th step. The optimisation results for structure mass, stress and strain energy after 60 steps show the tendency of oscillation convergence, which indicates the efficiency of the proposal multi-objective optimisation.
- Abstract(参考訳): 自由形の構造形式は、その不規則な空間形態のための空間構造を設計するために広く用いられている。
現在の自由形形状解析法は, 材料特性, 構造条件, 建設条件を十分に満たすことができないため, 初期3次元形状設計モデルと構築自由形構造との偏差が生じる。
そこで本論文の主な焦点は, 材料の特性や制約に則って, 複数の目的を考慮した自由形形態の合理性を改善することである。
本論文では、接着剤を添加した積層材を事例として選択する。
まず、予測能力に基づいて機械学習を採用する。
自由形式格子構造を選択し、NURBSの原理に従うことにより、自由形式構造は自由形式曲線に単純化される。
変圧器は、材料特性を考慮した曲線の曲率を訓練し、予測するために選択される。
曲率を予測すると、曲線は制御点、重み、結び目ベクトルからなるベクトルに変換される。
構造物の施工性と堅牢性を確保するため、構造物の質量、応力、ひずみエネルギーを最小化することが最適化目的である。
自由形形態学の変数として、自由形形態学の2つのパラメータ(重みと制御点のz座標)を抽出し、最適化を行う。
評価アルゴリズムは,複数のパラメータを最適化できるため,最適なツールとして選択された。
2つの変数を最適化しながら、z方向の最大変位などの機械的性能評価指標を第60ステップで示す。
60ステップ後の構造質量, 応力, ひずみエネルギーの最適化結果は, 多目的最適化の効率性を示す発振収束の傾向を示す。
関連論文リスト
- Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
新しい固体材料は、結晶構造の広大な空間を急速に探索し、安定した領域を探索する必要がある。
既存の手法では、大きな材料空間を探索し、望ましい特性と要求を持った多様なサンプルを生成するのに苦労している。
本研究では, 材料空間の対称性を効果的に活用し, 所望の特性を持つ結晶構造を生成するために, 階層的探索戦略を用いた新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2024-11-06T23:53:34Z) - Unleashing the power of novel conditional generative approaches for new materials discovery [3.972733741872872]
結晶構造設計問題に対する2つの生成的アプローチを提案する。
1つは条件付き構造変化であり、最もエネルギー的に好ましい構造と全てのより安定なポリモルフィックの間のエネルギー差を利用する。
もう1つは条件付き構造の生成であり、最もエネルギー的に好ましい構造と、その全てのより安定したポリモルフィックの間のエネルギー差を利用する。
論文 参考訳(メタデータ) (2024-11-05T14:58:31Z) - DISP-LLM: Dimension-Independent Structural Pruning for Large Language Models [62.98273649512654]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な成功を収めた。
これらのモデルに関連するメモリと計算コストの増加は、リソース制限されたデバイスへの展開に重大な課題をもたらす。
そこで本研究では,構造解析手法によって課される制約を緩和する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-15T18:51:18Z) - Consistent machine learning for topology optimization with microstructure-dependent neural network material models [0.0]
空間的に異なるミクロ構造対称性と異なる異なるマイクロ構造記述子を持つマルチスケール構造のためのフレームワークを提案する。
本研究は,密度に基づく設計最適化と整合性の統合の可能性を明らかにする。
論文 参考訳(メタデータ) (2024-08-25T14:17:43Z) - FFT-based surrogate modeling of auxetic metamaterials with real-time prediction of effective elastic properties and swift inverse design [1.3980986259786223]
軸構造は、その基盤となる構造形状と基材特性に強く影響される効果的な弾性特性を示す。
軸単位細胞の周期的均質化はこれらの特性を調べるのに利用できるが、計算コストが高く、設計空間の探索に制限がある。
本稿では, 補助単位細胞の有効弾性特性をリアルタイムに予測するサロゲートモデルを開発した。
論文 参考訳(メタデータ) (2024-08-24T09:20:33Z) - Machine Learning-Guided Design of Non-Reciprocal and Asymmetric Elastic Chiral Metamaterials [0.0]
本稿では, 靭帯接触角, 靭帯形状, 円半径など, キラルなメタマテリアルの設計空間を定義した。
次に、機械学習アプローチ、特にベイズ最適化を活用して、最大非相互性あるいは剛性非対称性を満たす最適な設計を行う。
この機構を解析したところ, 異なる方向の荷重下で複数の異なる接触状態を示すことができるキラルなメタマテリアルは, 高い非相反性と剛性非対称性の両方を同時に示すことができることがわかった。
論文 参考訳(メタデータ) (2024-04-19T23:39:56Z) - Flexible Isosurface Extraction for Gradient-Based Mesh Optimization [65.76362454554754]
本研究では、勾配に基づくメッシュ最適化について考察し、スカラー場の等曲面として表現することで、3次元表面メッシュを反復的に最適化する。
我々は、幾何学的、視覚的、あるいは物理的目的に対して未知のメッシュを最適化するために特別に設計された、異面表現であるFlexiCubesを紹介する。
論文 参考訳(メタデータ) (2023-08-10T06:40:19Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
我々は,材料単位セルのパターンを見つけるための,解釈可能な多分解能機械学習フレームワークを開発した。
具体的には、形状周波数特徴と単位セルテンプレートと呼ばれるメタマテリアルの2つの新しい解釈可能な表現を提案する。
論文 参考訳(メタデータ) (2021-11-10T21:19:02Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
分子グラフからの分子の3Dコンホメーラーアンサンブルの予測は、化学情報学と薬物発見の領域において重要な役割を担っている。
既存の生成モデルは、重要な分子幾何学的要素のモデリングの欠如を含むいくつかの欠点がある。
エンド・ツー・エンド、非自己回帰、SE(3)不変の機械学習手法であるGeoMolを提案し、3Dコンバータを生成する。
論文 参考訳(メタデータ) (2021-06-08T14:17:59Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
本研究では,データ駆動型生成ネットワークを用いたタンパク質構造最適化手法を提案する。
EBM-Foldアプローチは,従来のロゼッタ構造最適化ルーチンと比較して,高品質なデコイを効率よく生成できる。
論文 参考訳(メタデータ) (2021-05-11T03:40:29Z) - Topology optimization of 2D structures with nonlinearities using deep
learning [0.0]
クラウドコンピューティングは最適な非線形構造を探索することを可能にする。
最適化設計を予測するための畳み込みニューラルネットワークモデルを開発した。
開発したモデルは、反復的なスキームを必要とせずに、最適化された設計を正確に予測することができる。
論文 参考訳(メタデータ) (2020-01-31T12:36:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。