Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments
- URL: http://arxiv.org/abs/2203.14511v3
- Date: Sun, 21 Apr 2024 02:14:48 GMT
- Title: Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments
- Authors: Kosuke Imai, Michael Lingzhi Li,
- Abstract summary: We develop a general approach to statistical inference for heterogeneous treatment effects discovered by a generic ML algorithm.
We show how to estimate the average treatment effect within each of these groups, and construct a valid confidence interval.
- Score: 0.9208007322096533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Researchers are increasingly turning to machine learning (ML) algorithms to investigate causal heterogeneity in randomized experiments. Despite their promise, ML algorithms may fail to accurately ascertain heterogeneous treatment effects under practical settings with many covariates and small sample size. In addition, the quantification of estimation uncertainty remains a challenge. We develop a general approach to statistical inference for heterogeneous treatment effects discovered by a generic ML algorithm. We apply the Neyman's repeated sampling framework to a common setting, in which researchers use an ML algorithm to estimate the conditional average treatment effect and then divide the sample into several groups based on the magnitude of the estimated effects. We show how to estimate the average treatment effect within each of these groups, and construct a valid confidence interval. In addition, we develop nonparametric tests of treatment effect homogeneity across groups, and rank-consistency of within-group average treatment effects. The validity of our methodology does not rely on the properties of ML algorithms because it is solely based on the randomization of treatment assignment and random sampling of units. Finally, we generalize our methodology to the cross-fitting procedure by accounting for the additional uncertainty induced by the random splitting of data.
Related papers
- Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner [72.20769640318969]
Estimating causal quantities from observational data is crucial for understanding the safety and effectiveness of medical treatments.
Medical practitioners require not only estimating averaged causal quantities, but also understanding the randomness of the treatment effect as a random variable.
This randomness is referred to as aleatoric uncertainty and is necessary for understanding the probability of benefit from treatment or quantiles of the treatment effect.
arXiv Detail & Related papers (2024-11-05T18:14:49Z) - Identification of Average Causal Effects in Confounded Additive Noise Models [7.064432289838905]
We introduce a novel approach for estimating the average causal effects (ACEs) of any subset of the treatment variables on the outcome.
We also propose a randomized algorithm that further reduces the number of required interventions to poly-logarithmic in the number of nodes.
This establishes that a poly-logarithmic number of interventions is sufficient to infer the causal effects of any subset of treatments on the outcome in confounded ANMs with high probability.
arXiv Detail & Related papers (2024-07-13T21:46:57Z) - Multi-CATE: Multi-Accurate Conditional Average Treatment Effect Estimation Robust to Unknown Covariate Shifts [12.289361708127876]
We use methodology for learning multi-accurate predictors to post-process CATE T-learners.
We show how this approach can combine (large) confounded observational and (smaller) randomized datasets.
arXiv Detail & Related papers (2024-05-28T14:12:25Z) - Statistical Performance Guarantee for Subgroup Identification with
Generic Machine Learning [1.0878040851638]
We develop uniform confidence bands for estimation of the group average treatment effect sorted by generic ML algorithm (GATES)
We analyze a clinical trial of late-stage prostate cancer and find a relatively large proportion of exceptional responders.
arXiv Detail & Related papers (2023-10-12T01:41:47Z) - Comparison of Methods that Combine Multiple Randomized Trials to
Estimate Heterogeneous Treatment Effects [0.1398098625978622]
Leveraging multiple randomized controlled trials allows for the combination of datasets with unconfounded treatment assignment.
This paper discusses several non-parametric approaches for estimating heterogeneous treatment effects using data from multiple trials.
arXiv Detail & Related papers (2023-03-28T20:43:00Z) - Rethinking Collaborative Metric Learning: Toward an Efficient
Alternative without Negative Sampling [156.7248383178991]
Collaborative Metric Learning (CML) paradigm has aroused wide interest in the area of recommendation systems (RS)
We find that negative sampling would lead to a biased estimation of the generalization error.
Motivated by this, we propose an efficient alternative without negative sampling for CML named textitSampling-Free Collaborative Metric Learning (SFCML)
arXiv Detail & Related papers (2022-06-23T08:50:22Z) - Generalization bounds and algorithms for estimating conditional average
treatment effect of dosage [13.867315751451494]
We investigate the task of estimating the conditional average causal effect of treatment-dosage pairs from a combination of observational data and assumptions on the causal relationships in the underlying system.
This has been a longstanding challenge for fields of study such as epidemiology or economics that require a treatment-dosage pair to make decisions.
We show empirically new state-of-the-art performance results across several benchmark datasets for this problem.
arXiv Detail & Related papers (2022-05-29T15:26:59Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
Current approaches to causal structure learning either work with known intervention targets or use hypothesis testing to discover the unknown intervention targets.
This paper proposes a scalable and efficient algorithm that consistently identifies all intervention targets.
The proposed algorithm can be used to also update a given observational Markov equivalence class into the interventional Markov equivalence class.
arXiv Detail & Related papers (2021-11-15T03:16:56Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Robust Recursive Partitioning for Heterogeneous Treatment Effects with
Uncertainty Quantification [84.53697297858146]
Subgroup analysis of treatment effects plays an important role in applications from medicine to public policy to recommender systems.
Most of the current methods of subgroup analysis begin with a particular algorithm for estimating individualized treatment effects (ITE)
This paper develops a new method for subgroup analysis, R2P, that addresses all these weaknesses.
arXiv Detail & Related papers (2020-06-14T14:50:02Z) - Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference [73.23326654892963]
We propose a matching method that recovers direct treatment effects from randomized experiments where units are connected in an observed network.
Our method matches units almost exactly on counts of unique subgraphs within their neighborhood graphs.
arXiv Detail & Related papers (2020-03-02T15:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.