論文の概要: Key-Point-Driven Mathematical Reasoning Distillation of Large Language Model
- arxiv url: http://arxiv.org/abs/2407.10167v2
- Date: Mon, 22 Jul 2024 10:26:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 00:22:12.228329
- Title: Key-Point-Driven Mathematical Reasoning Distillation of Large Language Model
- Title(参考訳): キーポイント駆動数理推論による大言語モデルの蒸留
- Authors: Xunyu Zhu, Jian Li, Can Ma, Weiping Wang,
- Abstract要約: KPDD(Key-Point-Driven Mathematical Reasoning Distillation)を提案する。
KPDDは、問題解決プロセスを3段階に分割することで、SLMの推論性能を向上させる。
実験により、KPDD-CoTは推論能力を大幅に向上し、KPDD-PoTは数学的推論タスクにおける最先端のパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 15.542737858152053
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated exceptional proficiency in mathematical reasoning tasks due to their extensive parameter counts and training on vast datasets. Despite these capabilities, deploying LLMs is hindered by their computational demands. Distilling LLM mathematical reasoning into Smaller Language Models (SLMs) has emerged as a solution to this challenge, although these smaller models often suffer from errors in calculation and semantic understanding. Prior work has proposed Program-of-Thought Distillation (PoTD) to avoid calculation error. To further address semantic understanding errors, we propose Key-Point-Driven Mathematical Reasoning Distillation (KPDD). KPDD enhances the reasoning performance of SLMs by breaking down the problem-solving process into three stages: Core Question Extraction, Problem-Solving Information Extraction, and Step-by-Step Solution. This method is further divided into KPDD-CoT, which generates Chain-of-Thought rationales, and KPDD-PoT, which creates Program-of-Thought rationales. The experiment results show that KPDD-CoT significantly improves reasoning abilities, while KPDD-PoT achieves state-of-the-art performance in mathematical reasoning tasks. Our approach effectively mitigates misunderstanding errors, advancing the deployment of efficient and capable SLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)は、広範囲なパラメータ数と膨大なデータセットのトレーニングのため、数学的推論タスクにおいて例外的な習熟度を示してきた。
これらの機能にもかかわらず、LSMのデプロイは計算上の要求によって妨げられる。
LLMの数学的推論をSmaller Language Models (SLM) に拡張することはこの問題の解決法として現れてきたが、これらの小さなモデルは計算や意味理解の誤りに悩まされることが多い。
従来の研究では計算誤差を避けるためにPoTD(Program-of-Thought Distillation)が提案されていた。
意味理解の誤りに対処するため,キーポイント駆動型数学的推論蒸留(KPDD)を提案する。
KPDDは、問題解決プロセスを3段階に分割することで、SLMの推論性能を向上させる。
さらに、この手法を KPDD-CoT と KPDD-PoT に分割し、プログラム・オブ・ソート・論理を生成する。
実験の結果, KPDD-CoTは推論能力を大幅に向上する一方, KPDD-PoTは数学的推論タスクの最先端性能を達成することがわかった。
提案手法は, 誤りを効果的に軽減し, 効率的かつ有能なSLMの展開を推し進める。
関連論文リスト
- MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStarは、大言語モデルの純粋に推論に基づく探索手法である。
推論タスクを探索問題として定式化し、最適な推論経路を特定するための2つの探索アイデアを提案する。
Llama-2-13BやMistral-7Bのようなオープンソースモデルの推論能力を大幅に向上させ、GPT-3.5やGrok-1に匹敵する性能を実現している。
論文 参考訳(メタデータ) (2024-05-25T15:07:33Z) - Achieving >97% on GSM8K: Deeply Understanding the Problems Makes LLMs Better Solvers for Math Word Problems [86.03285157412839]
CoT(Chain-of-Thought)のプロンプトにより、さまざまな推論タスクにわたるLLM(Large Language Models)のパフォーマンスが向上した。
CoTは通常、セマンティックな誤解エラー、計算エラー、ステップミスという3つの落とし穴に悩まされる。
意味的誤解の誤りに対処し,LLMの数学的問題解決能力を改善するために,DUP(Deeply Understanding the Problems)を提案する。
論文 参考訳(メタデータ) (2024-04-23T12:16:05Z) - Distilling Algorithmic Reasoning from LLMs via Explaining Solution Programs [2.3020018305241337]
大きな言語モデルの推論能力を改善する効果的な方法として、明確な推論経路を蒸留する手法が登場している。
本稿では, LLM から推論能力を抽出する手法を提案する。
提案実験は,ReasonerがCoderによるプログラム実装をより効果的にガイドできることを示す。
論文 参考訳(メタデータ) (2024-04-11T22:19:50Z) - Distilling Mathematical Reasoning Capabilities into Small Language
Models [23.354025348567077]
本研究は,その数学的推論能力をサブビリオンパラメータ(SLM)に圧縮することにより,先進大言語モデル(LLM)の民主化という課題に対処する。
EoTD(Equation-of-Thought Distillation, EoTD)は, 理論過程を方程式ベース表現にカプセル化し, 微調整SLMのためのEoTDデータセットを構築する手法である。
論文 参考訳(メタデータ) (2024-01-22T11:37:18Z) - Estimating Fr\'echet bounds for validating programmatic weak supervision [50.13475056199486]
我々は、ある変数が連続的に評価される(おそらく高次元の)分布クラス上のFr'echeの境界を推定する手法を開発する。
プログラム弱監督(PWS)を訓練した機械学習(ML)モデルの性能を評価することで,アルゴリズムの有用性を実証する。
論文 参考訳(メタデータ) (2023-12-07T07:15:11Z) - Guiding Language Model Math Reasoning with Planning Tokens [128.57605860640948]
各推論ステップの開始時に計画トークンを導入し、モデルのガイドとして機能し、モデルパラメータにそれらの埋め込みを追加する。
提案手法では、トレーニング可能なパラメータ(わずか0.001%)の無視可能な増加が必要であり、完全な微調整か、よりパラメータ効率の良いスキームで適用することができる。
論文 参考訳(メタデータ) (2023-10-09T13:29:37Z) - No Train Still Gain. Unleash Mathematical Reasoning of Large Language
Models with Monte Carlo Tree Search Guided by Energy Function [3.0299876288833345]
大きな言語モデル(LLM)は、印象的な言語理解と文脈学習能力を示している。
LLMは、解の確率が高いにもかかわらず、正しい推論ステップと答えを生成するのにしばしば苦労する。
モンテカルロ木探索 (MCTS) と軽量エネルギー関数を組み込んだ決定ステップのランク付け手法を提案する。
論文 参考訳(メタデータ) (2023-09-01T13:10:54Z) - Sci-CoT: Leveraging Large Language Models for Enhanced Knowledge
Distillation in Small Models for Scientific QA [5.117094291273979]
大規模言語モデル(LLM)は、幅広い下流タスクで優れたパフォーマンスを示している。
本稿では2段階のフレームワークであるSci-CoTを提案する。
我々の8000万のパラメータモデルは、いくつかのショット設定の下でARC-EasyデータセットにおけるBLOOM-176Bの性能を上回ることができる。
論文 参考訳(メタデータ) (2023-08-09T03:18:07Z) - Evaluating and Improving Tool-Augmented Computation-Intensive Math
Reasoning [75.74103236299477]
CoT(Chain-of- Thought prompting)とツール拡張は、大きな言語モデルを改善するための効果的なプラクティスとして検証されている。
ツールインターフェース,すなわち textbfDELI を用いた推論ステップを考慮に入れた新しい手法を提案する。
CARPと他の6つのデータセットの実験結果から、提案されたDELIは、主に競合ベースラインを上回っていることが示された。
論文 参考訳(メタデータ) (2023-06-04T17:02:59Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
本研究では,大規模言語モデル (LLM) の推論能力を向上させるために,新しい満足度支援言語モデリング (SatLM) 手法を提案する。
我々はLLMを用いて命令型プログラムではなく宣言型タスク仕様を生成し、既製の自動定理証明器を利用して最終解を導出する。
我々はSATLMを8つの異なるデータセット上で評価し、命令パラダイムにおいてプログラム支援されたLMよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-05-16T17:55:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。