論文の概要: V2I-Calib: A Novel Calibration Approach for Collaborative Vehicle and Infrastructure LiDAR Systems
- arxiv url: http://arxiv.org/abs/2407.10195v1
- Date: Sun, 14 Jul 2024 13:34:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 19:09:07.144805
- Title: V2I-Calib: A Novel Calibration Approach for Collaborative Vehicle and Infrastructure LiDAR Systems
- Title(参考訳): V2I-Calib:コラボレーティブカーとインフラLiDARシステムのための新しい校正手法
- Authors: Qianxin Qu, Yijin Xiong, Xin Wu, Hanyu Li, Shichun Guo,
- Abstract要約: 本稿では,自動車と道路インフラのLiDARシステムのための新しいキャリブレーション手法を提案する。
親和性行列を構成することにより,車両ノードとインフラノード間の共通マッチングボックスを探索する。
DAIR-V2Xデータセットの実験により,本手法の優位性が確認された。
- 参考スコア(独自算出の注目度): 13.089879956974979
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cooperative vehicle and infrastructure LiDAR systems hold great potential, yet their implementation faces numerous challenges. Calibration of LiDAR systems across heterogeneous vehicle and infrastructure endpoints is a critical step to ensure the accuracy and consistency of perception system data, necessitating calibration methods that are real-time and stable. To this end, this paper introduces a novel calibration method for cooperative vehicle and road infrastructure LiDAR systems, which exploits spatial association information between detection boxes. The method centers around a novel Overall IoU metric that reflects the correlation of targets between vehicle and infrastructure, enabling real-time monitoring of calibration results. We search for common matching boxes between vehicle and infrastructure nodes by constructing an affinity matrix. Subsequently, these matching boxes undergo extrinsic parameter computation and optimization. Comparative and ablation experiments on the DAIR-V2X dataset confirm the superiority of our method. To better reflect the differences in calibration results, we have categorized the calibration tasks on the DAIR-V2X dataset based on their level of difficulty, enriching the dataset's utility for future research. Our project is available at https://github.com/MassimoQu/v2i-calib .
- Abstract(参考訳): 協調車両とインフラのLiDARシステムは大きな可能性を秘めているが、その実装は多くの課題に直面している。
異種車両およびインフラストラクチャエンドポイント間のLiDARシステムの校正は、リアルタイムで安定した校正方法を必要とする知覚システムのデータの正確性と一貫性を確保するための重要なステップである。
そこで本研究では, 検知ボックス間の空間的関連情報を活用した, 協調車両と道路インフラLiDARシステムのキャリブレーション手法を提案する。
この手法は、車両とインフラの目標の相関を反映し、キャリブレーション結果のリアルタイムモニタリングを可能にする、新しい総合IoUメトリックを中心にしている。
親和性行列を構成することにより,車両ノードとインフラノード間の共通マッチングボックスを探索する。
その後、これらのマッチングボックスは外部パラメータの計算と最適化を行う。
DAIR-V2Xデータセットの比較およびアブレーション実験により,本手法の優位性が確認された。
キャリブレーション結果の違いをよりよく反映するために,DAIR-V2Xデータセットのキャリブレーションタスクを,その難易度に基づいて分類し,将来の研究のためにデータセットの有用性を高めた。
私たちのプロジェクトはhttps://github.com/MassimoQu/v2i-calibで利用可能です。
関連論文リスト
- LiDAR-based End-to-end Temporal Perception for Vehicle-Infrastructure Cooperation [16.465037559349323]
LET-VIC(LDAR-based End-to-End Tracking framework for Vehicle-Temporal Cooperation)を紹介する。
LET-VICはV2X通信を利用して、車両とインフラの両方のセンサーから空間データと時間データを融合することで、時間知覚を高める。
V2X-Seq-SPDデータセットの実験では、LET-VICはベースラインモデルよりも優れており、少なくともmAPが13.7%、AMOTAが13.1%改善している。
論文 参考訳(メタデータ) (2024-11-22T13:34:29Z) - TLD-READY: Traffic Light Detection -- Relevance Estimation and Deployment Analysis [9.458657306918859]
効率的な交通信号検出は、自動運転車における知覚スタックの重要な構成要素である。
本研究は,先行研究の課題に対処しつつ,新たなディープラーニング検出システムを導入する。
本稿では,道路上の矢印マークを革新的に利用し,事前地図作成の必要性を解消する関連性推定システムを提案する。
論文 参考訳(メタデータ) (2024-09-11T14:12:44Z) - Accurate Cooperative Localization Utilizing LiDAR-equipped Roadside Infrastructure for Autonomous Driving [2.0499240875882]
LiDARは、センチメートルレベルの精度で車両のローカライズを容易にする。
これらの高精度な手法は、識別可能なマップ機能を持たない環境での信頼性上の課題に直面することが多い。
本稿では,道路側ユニット(RSU)と車両間通信(V2I)を併用して車両の自己位置決定を支援する手法を提案する。
論文 参考訳(メタデータ) (2024-07-11T10:44:42Z) - Handbook on Leveraging Lines for Two-View Relative Pose Estimation [82.72686460985297]
本稿では,画像ペア間の相対的なポーズを,点,線,およびそれらの一致をハイブリッド方式で共同で推定する手法を提案する。
我々のハイブリッドフレームワークは、すべての構成の利点を組み合わせて、挑戦的な環境で堅牢で正確な見積もりを可能にします。
論文 参考訳(メタデータ) (2023-09-27T21:43:04Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Automated Static Camera Calibration with Intelligent Vehicles [58.908194559319405]
自動ジオレファレンスカメラキャリブレーションのためのロバストキャリブレーション法を提案する。
本手法では, フィルタ/RTK受信機と慣性測定ユニット(IMU)を組み合わせたキャリブレーション車両が必要である。
我々の手法は、インフラと車両の両方で記録された情報と人間との相互作用を一切必要としない。
論文 参考訳(メタデータ) (2023-04-21T08:50:52Z) - TrajMatch: Towards Automatic Spatio-temporal Calibration for Roadside
LiDARs through Trajectory Matching [12.980324010888664]
我々は,道路沿いのLiDARを時間と空間の両方で自動調整できる最初のシステムであるTrajMatchを提案する。
実験の結果,TrajMatchは空間キャリブレーション誤差が10cm未満であり,時間キャリブレーション誤差が1.5ms未満であることがわかった。
論文 参考訳(メタデータ) (2023-02-04T12:27:01Z) - Analyzing Infrastructure LiDAR Placement with Realistic LiDAR [14.163886343824064]
V2X(V2X)協調知覚は注目されている。
インフラセンサの最適配置を見つける方法はめったに研究されていない。
本稿では,インフラセンサの最適設置位置を効率よく,効果的に検出できるパイプラインを提案する。
論文 参考訳(メタデータ) (2022-11-29T07:18:32Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
仮想データから絶対スケールを取得するための新しいフレームワークであるVRVOを提案する。
まず、モノクロ実画像とステレオ仮想データの両方を用いて、スケール対応の異種ネットワークをトレーニングする。
結果として生じるスケール一貫性の相違は、直接VOシステムと統合される。
論文 参考訳(メタデータ) (2022-03-11T01:51:54Z) - Robust Self-Supervised LiDAR Odometry via Representative Structure
Discovery and 3D Inherent Error Modeling [67.75095378830694]
そこで我々は,2段階のオドメトリ推定ネットワークを構築し,一連の部分領域変換を推定してエゴモーメントを求める。
本稿では,トレーニング,推論,マッピングフェーズにおける信頼できない構造の影響を軽減することを目的とする。
我々の2フレームのオードメトリーは、翻訳/回転誤差の点で、過去の芸術の状態を16%/12%上回っている。
論文 参考訳(メタデータ) (2022-02-27T12:52:27Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
本論文では,LiDAR,単眼,ステレオカメラを含む任意のセンサのパラメータを校正する手法を提案する。
提案手法は、通常、車両のセットアップで見られるように、非常に異なる解像度とポーズのデバイスを扱うことができる。
論文 参考訳(メタデータ) (2021-01-12T12:02:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。