論文の概要: Enhancing Weakly-Supervised Histopathology Image Segmentation with Knowledge Distillation on MIL-Based Pseudo-Labels
- arxiv url: http://arxiv.org/abs/2407.10274v1
- Date: Sun, 14 Jul 2024 17:15:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 18:49:26.844182
- Title: Enhancing Weakly-Supervised Histopathology Image Segmentation with Knowledge Distillation on MIL-Based Pseudo-Labels
- Title(参考訳): MILに基づく擬似ラベルの知識蒸留による弱視的組織像分割の促進
- Authors: Yinsheng He, Xingyu Li, Roger J. Zemp,
- Abstract要約: 病理組織像分割のための新しい蒸留フレームワークを提案する。
この枠組みは, 学生が教師の総合的な成果から直接学習できる, 反復的融合知識蒸留戦略を導入している。
- 参考スコア(独自算出の注目度): 8.934328206473456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Segmenting tumors in histological images is vital for cancer diagnosis. While fully supervised models excel with pixel-level annotations, creating such annotations is labor-intensive and costly. Accurate histopathology image segmentation under weakly-supervised conditions with coarse-grained image labels is still a challenging problem. Although multiple instance learning (MIL) has shown promise in segmentation tasks, surprisingly, no previous pseudo-supervision methods have used MIL-based outputs as pseudo-masks for training. We suspect this stems from concerns over noises in MIL results affecting pseudo supervision quality. To explore the potential of leveraging MIL-based segmentation for pseudo supervision, we propose a novel distillation framework for histopathology image segmentation. This framework introduces a iterative fusion-knowledge distillation strategy, enabling the student model to learn directly from the teacher's comprehensive outcomes. Through dynamic role reversal between the fixed teacher and learnable student models and the incorporation of weighted cross-entropy loss for model optimization, our approach prevents performance deterioration and noise amplification during knowledge distillation. Experimental results on public histopathology datasets, Camelyon16 and Digestpath2019, demonstrate that our approach not only complements various MIL-based segmentation methods but also significantly enhances their performance. Additionally, our method achieves new SOTA in the field.
- Abstract(参考訳): 病理組織像中の腫瘍の分節化は癌診断に不可欠である。
完全な教師付きモデルはピクセルレベルのアノテーションに優れていますが、そのようなアノテーションを作成するのは労力がかかり、コストがかかります。
粗い粒状画像ラベルを持つ弱教師付き条件下での正確な病理組織像分割は依然として難しい問題である。
複数インスタンス学習(MIL)はセグメンテーションタスクにおいて有望であるが、驚くべきことに、従来の擬似スーパービジョン手法では、トレーニングに擬似マスクとしてMILベースの出力を使用していない。
これは、MILのノイズに対する懸念が疑似監視品質に影響を及ぼすためと考えられる。
疑似監督のためにMILをベースとしたセグメンテーションを活用する可能性を探るため,病理組織像セグメンテーションのための新しい蒸留フレームワークを提案する。
この枠組みは, 学生が教師の総合的な成果から直接学習できる, 反復的融合知識蒸留戦略を導入している。
固定教師と学習可能な学生モデル間の動的役割逆転とモデル最適化のための重み付きクロスエントロピー損失の導入により,知識蒸留における性能劣化とノイズ増幅を防止することができる。
病理組織学的データセットであるCamelyon16とDigestpath2019の実験的結果は、我々のアプローチが様々なMILベースのセグメンテーション法を補完するだけでなく、その性能を大幅に向上させることを示した。
さらに,本手法は分野における新しいSOTAを実現する。
関連論文リスト
- COIN: Counterfactual inpainting for weakly supervised semantic segmentation for medical images [3.5418498524791766]
本研究は, 新規なカウンターファクト・インパインティング・アプローチ(COIN)の開発である。
COINは、予測された分類ラベルを生成モデルを用いて異常から正常に反転させる。
本手法の有効性は,エストニアのタルツ大学病院から取得したCT画像から,合成標的と実際の腎腫瘍を分離することによって実証される。
論文 参考訳(メタデータ) (2024-04-19T12:09:49Z) - Semi- and Weakly-Supervised Learning for Mammogram Mass Segmentation with Limited Annotations [49.33388736227072]
本稿では,マスセグメンテーションのための半弱教師付き学習フレームワークを提案する。
良好な性能を得るために, 限られた強ラベルのサンプルと十分な弱ラベルのサンプルを用いる。
CBIS-DDSMおよびINbreastデータセットを用いた実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-03-14T12:05:25Z) - Morphology-Enhanced CAM-Guided SAM for weakly supervised Breast Lesion Segmentation [7.747608350830482]
早期乳房超音波画像における病変の断片化を弱体化するための新しい枠組みを提案する。
本手法は,形態的拡張とクラスアクティベーションマップ(CAM)誘導局所化を用いた。
このアプローチはピクセルレベルのアノテーションを必要としないため、データアノテーションのコストが削減される。
論文 参考訳(メタデータ) (2023-11-18T22:06:04Z) - The Whole Pathological Slide Classification via Weakly Supervised
Learning [7.313528558452559]
細胞核疾患と病理タイルの空間的相関の2つの病因を考察した。
本研究では,抽出器訓練中の汚れ分離を利用したデータ拡張手法を提案する。
次に,隣接行列を用いてタイル間の空間的関係を記述する。
これら2つのビューを統合することで,H&E染色組織像を解析するためのマルチインスタンス・フレームワークを設計した。
論文 参考訳(メタデータ) (2023-07-12T16:14:23Z) - Active Learning Enhances Classification of Histopathology Whole Slide
Images with Attention-based Multiple Instance Learning [48.02011627390706]
我々は、注意に基づくMILをトレーニングし、データセット内の各画像に対する信頼度を算出し、専門家のアノテーションに対して最も不確実なWSIを選択する。
新たな注意誘導損失により、各クラスにアノテートされた領域がほとんどない、トレーニングされたモデルの精度が向上する。
将来的には、病理組織学における癌分類の臨床的に関連する文脈において、MILモデルのトレーニングに重要な貢献をする可能性がある。
論文 参考訳(メタデータ) (2023-03-02T15:18:58Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Transformer based multiple instance learning for weakly supervised
histopathology image segmentation [7.449646821160063]
病理組織像における画素レベルのセグメンテーションの弱教師付き手法を提案する。
Transformerはインスタンス間の関係を確立し、インスタンスがMIL内で互いに独立しているという欠点を解決する。
弱い教師付き手法におけるアノテーションの制限を克服するために、深い監督が導入されている。
論文 参考訳(メタデータ) (2022-05-18T12:04:26Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
我々は、デコードフェーズに2つの並列分岐を持つMixed-UNetという新しいモデルを開発する。
地域病院や公開データセットから収集したデータセットに対して,いくつかの一般的なディープラーニングに基づくセグメンテーションアプローチに対して,設計したMixed-UNetを評価した。
論文 参考訳(メタデータ) (2022-05-06T08:37:02Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。