論文の概要: Thyroidiomics: An Automated Pipeline for Segmentation and Classification of Thyroid Pathologies from Scintigraphy Images
- arxiv url: http://arxiv.org/abs/2407.10336v1
- Date: Sun, 14 Jul 2024 21:29:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 16:40:16.611060
- Title: Thyroidiomics: An Automated Pipeline for Segmentation and Classification of Thyroid Pathologies from Scintigraphy Images
- Title(参考訳): 甲状腺疾患 : シンチグラフィー画像からの甲状腺疾患の分離と分類のための自動パイプライン
- Authors: Maziar Sabouri, Shadab Ahamed, Azin Asadzadeh, Atlas Haddadi Avval, Soroush Bagheri, Mohsen Arabi, Seyed Rasoul Zakavi, Emran Askari, Ali Rasouli, Atena Aghaee, Mohaddese Sehati, Fereshteh Yousefirizi, Carlos Uribe, Ghasem Hajianfar, Habib Zaidi, Arman Rahmim,
- Abstract要約: 本研究の目的は,甲状腺シンチグラフィー画像を用いた甲状腺疾患分類を向上する自動パイプラインを開発することである。
2,643人の甲状腺シンチグラフィー画像を収集し,DG(diffuse goiter),MNG(multinodal goiter),甲状腺炎(TH)に分類した。
パイプラインは、さまざまなクラスにわたるいくつかの分類指標で、医師のセグメンテーションに匹敵するパフォーマンスを示した。
- 参考スコア(独自算出の注目度): 0.23960026858846614
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The objective of this study was to develop an automated pipeline that enhances thyroid disease classification using thyroid scintigraphy images, aiming to decrease assessment time and increase diagnostic accuracy. Anterior thyroid scintigraphy images from 2,643 patients were collected and categorized into diffuse goiter (DG), multinodal goiter (MNG), and thyroiditis (TH) based on clinical reports, and then segmented by an expert. A ResUNet model was trained to perform auto-segmentation. Radiomic features were extracted from both physician (scenario 1) and ResUNet segmentations (scenario 2), followed by omitting highly correlated features using Spearman's correlation, and feature selection using Recursive Feature Elimination (RFE) with XGBoost as the core. All models were trained under leave-one-center-out cross-validation (LOCOCV) scheme, where nine instances of algorithms were iteratively trained and validated on data from eight centers and tested on the ninth for both scenarios separately. Segmentation performance was assessed using the Dice similarity coefficient (DSC), while classification performance was assessed using metrics, such as precision, recall, F1-score, accuracy, area under the Receiver Operating Characteristic (ROC AUC), and area under the precision-recall curve (PRC AUC). ResUNet achieved DSC values of 0.84$\pm$0.03, 0.71$\pm$0.06, and 0.86$\pm$0.02 for MNG, TH, and DG, respectively. Classification in scenario 1 achieved an accuracy of 0.76$\pm$0.04 and a ROC AUC of 0.92$\pm$0.02 while in scenario 2, classification yielded an accuracy of 0.74$\pm$0.05 and a ROC AUC of 0.90$\pm$0.02. The automated pipeline demonstrated comparable performance to physician segmentations on several classification metrics across different classes, effectively reducing assessment time while maintaining high diagnostic accuracy. Code available at: https://github.com/ahxmeds/thyroidiomics.git.
- Abstract(参考訳): 本研究の目的は,甲状腺シンチグラフィー画像を用いた甲状腺疾患分類を向上し,評価時間を短縮し,診断精度を向上する自動パイプラインを開発することである。
2,643人の甲状腺シンチグラフィー画像を収集し,臨床報告に基づいてDG,MNG,甲状腺炎に分類し,鑑別を行った。
ResUNetモデルは自動セグメンテーションを実行するために訓練された。
専門医 (scenario 1) と ResUNet セグメンテーション (scenario2) の両方から放射線学的特徴を抽出し, スピアマン相関とXGBoost をコアとした再帰的特徴除去 (RFE) による特徴選択を除外した。
すべてのモデルはLOCOCV(Leave-one-center-out cross-validation)スキームでトレーニングされ、アルゴリズムの9つのインスタンスが8つのセンターのデータに基づいて反復的にトレーニングされ、それぞれ別々にテストされた。
セグメンテーション性能はDice類似度係数(DSC)を用いて評価され、分類性能は精度、リコール、F1スコア、精度、受信器動作特性(ROC AUC)の領域、精度-リコール曲線(PRC AUC)の領域などを用いて評価された。
ResUNet は、それぞれ MNG と TH と DG に対して 0.84$\pm$0.03 と 0.71$\pm$0.06 と 0.86$\pm$0.02 の DSC 値を達成した。
シナリオ1の分類は0.76$\pm$0.04、ROC AUCは0.92$\pm$0.02、シナリオ2の分類は0.74$\pm$0.05、ROC AUCは0.90$\pm$0.02である。
自動パイプラインは、異なるクラスにわたるいくつかの分類基準で医師のセグメンテーションに匹敵する性能を示し、高い診断精度を維持しながら評価時間を効果的に短縮した。
コードは、https://github.com/ahxmeds/thyroidiomics.git.comで入手できる。
関連論文リスト
- Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
視覚変換器(ViT)の胸部X線撮影(CXR)分類性能と注意ベース唾液の解釈可能性について検討する。
ViTは、CheXpert、Chest X-Ray 14、MIMIC CXR、VinBigDataの4つの公開データセットを用いて、肺疾患分類のために微調整された。
ViTsは最先端のCNNと比べてCXR分類AUCに匹敵するものであった。
論文 参考訳(メタデータ) (2023-03-03T12:05:41Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - Corneal endothelium assessment in specular microscopy images with Fuchs'
dystrophy via deep regression of signed distance maps [48.498376125522114]
本稿では,UNetをベースとしたセグメンテーション手法を提案する。
これは、フックスのジストロフィーの全度にわたって、信頼できるCE形態計測と腸骨同定を実現する。
論文 参考訳(メタデータ) (2022-10-13T15:34:20Z) - Application of the nnU-Net for automatic segmentation of lung lesion on
CT images, and implication on radiomic models [1.8231394717039833]
非小細胞肺癌患者のCT画像にディープラーニング自動分画法を適用した。
生存放射線モデルの性能評価において,手動と自動セグメンテーションの併用も検討した。
論文 参考訳(メタデータ) (2022-09-24T15:04:23Z) - Learning to diagnose common thorax diseases on chest radiographs from
radiology reports in Vietnamese [0.33598755777055367]
ベトナムの放射線学報告から情報を抽出し,胸部X線(CXR)画像の正確なラベルを提供するデータ収集・アノテーションパイプラインを提案する。
このことは、ベトナムの放射線学者や臨床医が、国によって異なる可能性のある内因性診断カテゴリと密接に一致したデータに注釈を付けることで、ベトナムの放射線技師や臨床医に利益をもたらす可能性がある。
論文 参考訳(メタデータ) (2022-09-11T06:06:03Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
本研究では,深層学習に基づく脳波チャンネルの特徴レベル融合を行う。
チャネル選択,融合,分類手順を2つの最適化アルゴリズムで最適化した。
論文 参考訳(メタデータ) (2021-12-18T14:17:49Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
そこで本研究では,病変からスライスまでのマッピング機能に基づく,病変レベルのコスト感受性損失と付加的なスライスレベルの損失を組み込んだ新しいPCa検出ネットワークを提案する。
1) 病変レベルFNRを0.19から0.10に, 病変レベルFPRを1.03から0.66に減らした。
論文 参考訳(メタデータ) (2021-06-04T09:51:27Z) - Automated Detection of Coronary Artery Stenosis in X-ray Angiography
using Deep Neural Networks [0.0]
X線冠動脈造影画像からの狭窄検出を部分的に自動化する2段階のディープラーニングフレームワークを提案する。
左/右冠動脈角ビューの分類作業において0.97の精度を達成し、LCAとRCAの関心領域の決定について0.68/0.73のリコールを行った。
論文 参考訳(メタデータ) (2021-03-04T11:45:54Z) - Classification of Schizophrenia from Functional MRI Using Large-scale
Extended Granger Causality [0.0]
大規模拡張グランジャー因果関係(lsxgc)は脳ネットワーク接続の変化を捉えることができる。
lsXGCは典型的なコントロールから統合失調症の患者を分類するためのバイオマーカーとして機能します。
統合失調症のバイオマーカーとしてのlsXGCの適用性について検討した。
論文 参考訳(メタデータ) (2021-01-12T20:36:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。