Classification of Heart Sounds Using Multi-Branch Deep Convolutional Network and LSTM-CNN
- URL: http://arxiv.org/abs/2407.10689v5
- Date: Thu, 21 Nov 2024 17:32:38 GMT
- Title: Classification of Heart Sounds Using Multi-Branch Deep Convolutional Network and LSTM-CNN
- Authors: Seyed Amir Latifi, Hassan Ghassemian, Maryam Imani,
- Abstract summary: This paper presents a fast and cost-effective method for diagnosing cardiac abnormalities using low-cost systems in clinics.
The overall classification accuracy of heart sounds with the LSCN network is more than 96%.
- Score: 2.7699831151653305
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents a fast and cost-effective method for diagnosing cardiac abnormalities with high accuracy and reliability using low-cost systems in clinics. The primary limitation of automatic diagnosing of cardiac diseases is the rarity of correct and acceptable labeled samples, which can be expensive to prepare. To address this issue, two methods are proposed in this work. The first method is a unique Multi-Branch Deep Convolutional Neural Network (MBDCN) architecture inspired by human auditory processing, specifically designed to optimize feature extraction by employing various sizes of convolutional filters and audio signal power spectrum as input. In the second method, called as Long short-term memory-Convolutional Neural (LSCN) model, Additionally, the network architecture includes Long Short-Term Memory (LSTM) network blocks to improve feature extraction in the time domain. The innovative approach of combining multiple parallel branches consisting of the one-dimensional convolutional layers along with LSTM blocks helps in achieving superior results in audio signal processing tasks. The experimental results demonstrate superiority of the proposed methods over the state-of-the-art techniques. The overall classification accuracy of heart sounds with the LSCN network is more than 96%. The efficiency of this network is significant compared to common feature extraction methods such as Mel Frequency Cepstral Coefficients (MFCC) and wavelet transform. Therefore, the proposed method shows promising results in the automatic analysis of heart sounds and has potential applications in the diagnosis and early detection of cardiovascular diseases.
Related papers
- FAD-Net: Frequency-Domain Attention-Guided Diffusion Network for Coronary Artery Segmentation using Invasive Coronary Angiography [5.0119372803973965]
We propose a novel deep learning model based on frequency-domain analysis to enhance the accuracy of coronary artery segmentation.<n>FAD-Net achieves a mean Dice coefficient of 0.8717 in coronary artery segmentation, outperforming existing state-of-the-art methods.<n>It attains a true positive rate of 0.6140 and a positive predictive value of 0.6398 in stenosis detection, underscoring its clinical applicability.
arXiv Detail & Related papers (2025-06-13T04:10:48Z) - Towards Clinical Practice in CT-Based Pulmonary Disease Screening: An Efficient and Reliable Framework [16.98886836566185]
Cluster-based Sub-Sampling (CSS) method efficiently selects a compact yet comprehensive subset of CT slices.<n>Hybrid Uncertainty Quantification (HUQ) mechanism assesses both Aleatoric Uncertainty (AU) and Epistemic Uncertainty (EU) with minimal computational overhead.
arXiv Detail & Related papers (2024-12-02T14:18:17Z) - Enhancing Diagnostic Precision in Gastric Bleeding through Automated Lesion Segmentation: A Deep DuS-KFCM Approach [20.416923956241497]
We introduce a novel deep learning model, the Dual Spatial Kernelized Constrained Fuzzy C-Means (Deep DuS-KFCM) clustering algorithm.
This system synergizes Neural Networks with Fuzzy Logic to offer a highly precise and efficient identification of bleeding regions.
Our model demonstrated unprecedented accuracy rates of 87.95%, coupled with a specificity of 96.33%, outperforming contemporary segmentation methods.
arXiv Detail & Related papers (2024-11-21T18:21:42Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - Advanced Neural Network Architecture for Enhanced Multi-Lead ECG Arrhythmia Detection through Optimized Feature Extraction [0.0]
Arrhythmia, characterized by irregular heart rhythms, presents formidable diagnostic challenges.
This study introduces an innovative approach utilizing deep learning techniques to address the complexities of arrhythmia classification.
arXiv Detail & Related papers (2024-04-13T19:56:15Z) - Bag of Tricks for Long-Tailed Multi-Label Classification on Chest X-Rays [40.11576642444264]
This report presents a brief description of our solution in the ICCV CVAMD 2023 CXR-LT Competition.
We empirically explored the effectiveness for CXR diagnosis with the integration of several advanced designs.
Our framework finally achieves 0.349 mAP on the competition test set, ranking in the top five.
arXiv Detail & Related papers (2023-08-17T08:25:55Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - DopUS-Net: Quality-Aware Robotic Ultrasound Imaging based on Doppler
Signal [48.97719097435527]
DopUS-Net combines the Doppler images with B-mode images to increase the segmentation accuracy and robustness of small blood vessels.
An artery re-identification module qualitatively evaluate the real-time segmentation results and automatically optimize the probe pose for enhanced Doppler images.
arXiv Detail & Related papers (2023-05-15T18:19:29Z) - HARDC : A novel ECG-based heartbeat classification method to detect
arrhythmia using hierarchical attention based dual structured RNN with
dilated CNN [3.8791511769387625]
We have developed a novel hybrid hierarchical attention-based bidirectional recurrent neural network with dilated CNN (HARDC) method for arrhythmia classification.
The proposed HARDC fully exploits the dilated CNN and bidirectional recurrent neural network unit (BiGRU-BiLSTM) architecture to generate fusion features.
Our results indicate that an automated and highly computed method to classify multiple types of arrhythmia signals holds considerable promise.
arXiv Detail & Related papers (2023-03-06T13:26:29Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Deep Convolutional Learning-Aided Detector for Generalized Frequency
Division Multiplexing with Index Modulation [0.0]
The proposed method first pre-processes the received signal by using a zero-forcing (ZF) detector and then uses a neural network consisting of a convolutional neural network (CNN) followed by a fully-connected neural network (FCNN)
The FCNN part uses only two fully-connected layers, which can be adapted to yield a trade-off between complexity and bit error rate (BER) performance.
It has been demonstrated that the proposed deep convolutional neural network-based detection and demodulation scheme provides better BER performance compared to ZF detector with a reasonable complexity increase.
arXiv Detail & Related papers (2022-02-06T22:18:42Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - Quality control for more reliable integration of deep learning-based
image segmentation into medical workflows [0.23609258021376836]
We present an analysis of state-of-the-art automatic quality control (QC) approaches to estimate the certainty of their outputs.
We validated the most promising approaches on a brain image segmentation task identifying white matter hyperintensities (WMH) in magnetic resonance imaging data.
arXiv Detail & Related papers (2021-12-06T16:30:43Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Heart Sound Classification Considering Additive Noise and Convolutional
Distortion [2.63046959939306]
Automatic analysis of heart sounds for abnormality detection is faced with the challenges of additive noise and sensor-dependent degradation.
This paper aims to develop methods to address the cardiac abnormality detection problem when both types of distortions are present in the cardiac auscultation sound.
The proposed method paves the way towards developing computer-aided cardiac auscultation systems in noisy environments using low-cost stethoscopes.
arXiv Detail & Related papers (2021-06-03T14:09:04Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - Heart Sound Segmentation using Bidirectional LSTMs with Attention [37.62160903348547]
We propose a novel framework for the segmentation of phonocardiogram (PCG) signals into heart states.
We exploit recent advancements in attention based learning to segment the PCG signal.
The proposed method attains state-of-the-art performance on multiple benchmarks including both human and animal heart recordings.
arXiv Detail & Related papers (2020-04-02T02:09:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.