論文の概要: Hey, That's My Model! Introducing Chain & Hash, An LLM Fingerprinting Technique
- arxiv url: http://arxiv.org/abs/2407.10887v2
- Date: Wed, 17 Jul 2024 07:39:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 11:42:46.347076
- Title: Hey, That's My Model! Introducing Chain & Hash, An LLM Fingerprinting Technique
- Title(参考訳): これが私のモデルだ! LLMフィンガープリント技術であるChain & Hashの導入
- Authors: Mark Russinovich, Ahmed Salem,
- Abstract要約: Chain & Hashは、暗号化されたフレーバーで指紋を実装する、新しいシンプルなフィンガープリントアプローチだ。
チェイン・アンド・ハッシュ法を複数のモデルで評価し,良性変換に対するロバスト性を実証した。
- 参考スコア(独自算出の注目度): 2.7174461714624805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Amid growing concerns over the ease of theft and misuse of Large Language Models (LLMs), the need for fingerprinting models has increased. Fingerprinting, in this context, means that the model owner can link a given model to their original version, thereby identifying if their model is being misused or has been completely stolen. In this paper, we first define a set five properties a successful fingerprint should satisfy; namely, the fingerprint should be Transparent, Efficient, Persistent, Robust, and Unforgeable. Next, we propose Chain & Hash, a new, simple fingerprinting approach that implements a fingerprint with a cryptographic flavor, achieving all these properties. Chain & Hash involves generating a set of questions (the fingerprints) along with a set of potential answers. These elements are hashed together using a secure hashing technique to select the value for each question, hence providing an unforgeability property-preventing adversaries from claiming false ownership. We evaluate the Chain & Hash technique on multiple models and demonstrate its robustness against benign transformations, such as fine-tuning on different datasets, and adversarial attempts to erase the fingerprint. Finally, our experiments demonstrate the efficiency of implementing Chain & Hash and its utility, where fingerprinted models achieve almost the same performance as non-fingerprinted ones across different benchmarks.
- Abstract(参考訳): 盗難の容易さやLLM(Large Language Models)の誤用に関する懸念が高まっている中、フィンガープリントモデルの必要性が高まっている。
この文脈でのフィンガープリントは、モデル所有者が与えられたモデルを元のバージョンにリンクできることを意味し、それによってモデルが誤用されているか、完全に盗まれているかを識別する。
本稿では,まず,指紋が満足すべき5つの特性,すなわち,指紋は透過性,効率性,永続性,ロバスト性,非偽造性(unforgeable)の5つを定義する。
次にChain & Hashを提案する。これは、暗号的なフレーバーを持つ指紋を実装し、これらの特性をすべて達成する、新しい、シンプルなフィンガープリントアプローチである。
Chain & Hashは、潜在的な答えのセットとともに、一連の質問(指紋)を生成する。
これらの要素はセキュアなハッシュ技術を使ってまとめられ、各質問の値を選択する。
我々は,複数のモデル上でChain & Hash技術を評価し,異なるデータセットの微調整や指紋の消去の試みなど,良性変換に対する堅牢性を実証した。
最後に、我々はChain & Hashとそのユーティリティの実装の効率を実証し、指紋モデルが異なるベンチマークで非指紋モデルとほぼ同等のパフォーマンスを達成した。
関連論文リスト
- Instructional Fingerprinting of Large Language Models [57.72356846657551]
本稿では,非常に軽量なインストラクションチューニングの一形態として,Large Language Model (LLM) の指紋認証に関する実験的検討を行う。
11個の LLM 実験の結果,このアプローチは軽量であり,モデルの正常な挙動には影響しないことがわかった。
また、パブリッシャーの誇張を防ぎ、指紋の推測やパラメータ効率のトレーニングに対する堅牢性を維持し、MITライセンスのような多段階の指紋認証をサポートする。
論文 参考訳(メタデータ) (2024-01-21T09:51:45Z) - Comparative analysis of segmentation and generative models for
fingerprint retrieval task [0.0]
指紋は、指が汚れたり、濡れたり、怪我したり、センサーが故障したりすると、品質が低下する。
本稿では,ジェネレーティブ(GAN)とモデルを用いた深層学習手法を提案する。
本研究は, GANネットワークよりも, u-net モデルの方が優れた性能を示した。
論文 参考訳(メタデータ) (2022-09-13T17:21:14Z) - Hierarchical Perceptual Noise Injection for Social Media Fingerprint
Privacy Protection [106.5308793283895]
ソーシャルメディアからの指紋漏洩は 画像を匿名化したいという強い欲求を喚起します
指紋漏洩を保護するために、画像に知覚不能な摂動を加えることにより、敵攻撃が解決策として現れる。
この問題を解決するために,階層型パーセプティカルノイズ注入フレームワークであるFingerSafeを提案する。
論文 参考訳(メタデータ) (2022-08-23T02:20:46Z) - FBI: Fingerprinting models with Benign Inputs [17.323638042215013]
本稿では,モデルファミリとその変種の概念を一般化することにより,モデルの大幅な修正に耐性のある指紋認証方式を提案する。
我々は、修正されていない画像である良性入力が、両方のタスクに十分な材料であることを実証することによって、両方の目標を達成する。
どちらのアプローチも、かつてない1000以上のネットワークに対して実験的に検証されている。
論文 参考訳(メタデータ) (2022-08-05T13:55:36Z) - Pair-Relationship Modeling for Latent Fingerprint Recognition [25.435974669629374]
本稿では,2つの指紋のペア関係を認識の類似性として直接モデル化する手法を提案する。
2つのデータベースに対する実験結果から,提案手法が技術状況より優れていることが示された。
論文 参考訳(メタデータ) (2022-07-02T11:31:31Z) - FingerGAN: A Constrained Fingerprint Generation Scheme for Latent
Fingerprint Enhancement [23.67808389519383]
拘束指紋生成問題として潜伏指紋強調法を定式化する手法を提案する。
2つの公開潜伏指紋データベースによる実験結果から,本手法が芸術の状態を著しく上回ることが示された。
論文 参考訳(メタデータ) (2022-06-26T14:05:21Z) - SpoofGAN: Synthetic Fingerprint Spoof Images [47.87570819350573]
指紋スプーフ検出の進歩に対する大きな制限は、公開可能な大規模な指紋スプーフデータセットの欠如である。
この研究は、これらのアルゴリズムに十分なデータを供給する際に、合成指紋(ライブ指紋とスプーフ指紋の両方)の有用性を実証することを目的としている。
論文 参考訳(メタデータ) (2022-04-13T16:27:27Z) - Synthesis and Reconstruction of Fingerprints using Generative
Adversarial Networks [6.700873164609009]
本稿では,StyleGan2アーキテクチャに基づく新しい指紋合成・再構成フレームワークを提案する。
また,生成した指紋の属性を同一性を保ちながら修正する計算手法も提案する。
提案手法は, 指紋合成と復元の両面において, 現代的手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2022-01-17T00:18:00Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
深層生成モデルは質的に新しいパフォーマンスレベルを達成した。
この技術がスプーフセンサーに誤用され、ディープフェイクを発生させ、大規模な誤情報を可能にするという懸念がある。
最先端のジェネレーションモデルを責任を持って公開することで、研究者や企業がモデルに指紋を刻むことができます。
論文 参考訳(メタデータ) (2020-12-16T03:51:54Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
光現実性画像生成は、GAN(Generative Adversarial Network)のブレークスルーにより、新たな品質レベルに達した。
しかし、このようなディープフェイクのダークサイド、すなわち生成されたメディアの悪意ある使用は、視覚的誤報に関する懸念を提起する。
我々は,モデルに人工指紋を導入することによって,深度検出の積極的な,持続可能なソリューションを模索する。
論文 参考訳(メタデータ) (2020-07-16T16:49:55Z) - Latent Fingerprint Registration via Matching Densely Sampled Points [100.53031290339483]
既存の潜伏指紋登録手法は、主にミツバチ間の対応を確立することに基づいている。
本研究では,一対の指紋間の空間的変換を推定する,最小限の潜伏指紋登録手法を提案する。
提案手法は,特に挑戦的な条件下で,最先端の登録性能を実現する。
論文 参考訳(メタデータ) (2020-05-12T15:51:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。