論文の概要: Q-Sparse: All Large Language Models can be Fully Sparsely-Activated
- arxiv url: http://arxiv.org/abs/2407.10969v2
- Date: Sat, 20 Jul 2024 17:57:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 00:12:27.272997
- Title: Q-Sparse: All Large Language Models can be Fully Sparsely-Activated
- Title(参考訳): Q-Sparse: すべての大規模言語モデルは、完全に疎活性化できる
- Authors: Hongyu Wang, Shuming Ma, Ruiping Wang, Furu Wei,
- Abstract要約: Q-Sparseは、スパースアクティベートされた大規模言語モデル(LLM)を訓練するための、シンプルで効果的なアプローチである。
Q-Sparse は LLM における活性化の完全な分散を可能にし、推論においてかなりの効率向上をもたらす。
バッチトレーニングと推論のためのBlock Q-Sparseも導入しています。
- 参考スコア(独自算出の注目度): 93.45300714803429
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce, Q-Sparse, a simple yet effective approach to training sparsely-activated large language models (LLMs). Q-Sparse enables full sparsity of activations in LLMs which can bring significant efficiency gains in inference. This is achieved by applying top-K sparsification to the activations and the straight-through-estimator to the training. We also introduce Block Q-Sparse for batch training and inference. The key results from this work are, (1) Q-Sparse can achieve results comparable to those of baseline LLMs while being much more efficient at inference time; (2) We present an inference-optimal scaling law for sparsely-activated LLMs; (3) Q-Sparse is effective in different settings, including training-from-scratch, continue-training of off-the-shelf LLMs, and finetuning; (4) Q-Sparse works for both full-precision and 1-bit LLMs (e.g., BitNet b1.58). Particularly, the synergy of BitNet b1.58 and Q-Sparse (can be equipped with MoE) provides the cornerstone and a clear path to revolutionize the efficiency, including cost and energy consumption, of future LLMs.
- Abstract(参考訳): Q-Sparseは、スパースアクティベートされた大規模言語モデル(LLM)を訓練するための、シンプルで効果的なアプローチである。
Q-Sparse は LLM における活性化の完全な分散を可能にし、推論においてかなりの効率向上をもたらす。
これは、アクティベーションにトップKスペーシングを適用し、トレーニングにストレートスルー推定器を適用することで達成される。
バッチトレーニングと推論のためのBlock Q-Sparseも導入しています。
本研究の主な成果は,(1)Q-Sparse は,(1) ベースライン LLM に比較して,より効率的な推論時間で結果が得られること,(2) 疎活性化 LLM に対する推論-最適スケーリング則を示すこと,(3) Q-Sparse は,Scratch からのトレーニング,オフ・ザ・シェルフ LLM の継続トレーニング,微調整,(4) Q-Sparse は完全精度と1ビット LLM (例: BitNet b1.58) の両方で動作すること,などである。
特に、BitNet b1.58とQ-Sparse(MoEを装備できる)のシナジーは、将来のLCMのコストやエネルギー消費を含む効率を変革するための基盤と明確な経路を提供する。
関連論文リスト
- Low-Rank Quantization-Aware Training for LLMs [8.535254310145005]
大規模言語モデル(LLM)は、一様だが、計算とメモリの需要がますます増大しているため、その実践的な展開は困難である。
LLMのための軽量かつメモリ効率のQATアルゴリズムであるLR-QATを提案する。
提案手法は、PTQ(Common-training Quantization)アプローチよりも優れ、メモリ使用率のごく一部でフルモデルQATと同じモデル性能に達する。
論文 参考訳(メタデータ) (2024-06-10T15:44:22Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [67.67135738642547]
後学習量子化(PTQ)は、大規模言語モデル(LLM)において研究される強力な圧縮手法である。
既存のPTQ法は、特に4ビット幅以下では、精度と効率の点で理想的ではない。
本稿では,LSM,すなわちSliM-LLMに対するSalience-Driven Mixed-Precision Quantizationスキームを提案する。
論文 参考訳(メタデータ) (2024-05-23T16:21:48Z) - Learn To be Efficient: Build Structured Sparsity in Large Language Models [17.940183066850565]
大きな言語モデル(LLM)は、その10億レベルのパラメータで驚くべき成功を収めていますが、高い推論オーバーヘッドを引き起こします。
既存の方法は、訓練後の環境で自然に形成された活性化空間の利用にのみ焦点をあてる。
本稿では,Learning-To-Efficient (LTE) という学習学習アルゴリズムを導入する。
論文 参考訳(メタデータ) (2024-02-09T01:18:16Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLMは、事前訓練された大規模言語モデルに適した1ビット後のトレーニング後の量子化スキームである。
LLaMA2-70Bの8.41パープレキシティは、様々なLLMファミリーで1.08ビットの重みしか持たない。
論文 参考訳(メタデータ) (2024-02-06T09:26:34Z) - One-Shot Sensitivity-Aware Mixed Sparsity Pruning for Large Language Models [42.95555008229016]
そこで本研究では, ヘッセン感度を意識した混合疎水性プルーニング法を, 再トレーニングを必要とせず, 最低50%の疎水性まで適用する方法を提案する。
提案手法の利点は, 空間が極めて高い場合にさらに顕著である。
論文 参考訳(メタデータ) (2023-10-14T05:43:09Z) - Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs [67.38165028487242]
そこで我々は,DSnoT(Dynamic Sparse No Training, 動的スパース・ノー・トレーニング)を導入した。
動的スパーストレーニングにインスパイアされたDSnoTは、密度とスパースLLM間の再構成誤差を最小限に抑える。
本稿は, LLMのスパースを, 効率的なトレーニング自由な方法で微調整し, 新たな会場をオープンして, LLMの空間性に大きな可能性を拡大する方法について, 新たな知見を提供する。
論文 参考訳(メタデータ) (2023-10-13T07:38:52Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
大規模言語モデル(LLM)は、最近、テキストを介してコンテキスト対応の応答を提供するという、印象的な能力を実証した。
この能力は、パターン補完に関連するシーケンシャルな意思決定タスクにおいて、妥当なソリューションを予測するために使われる可能性がある。
第一強化学習(RL)エージェントによって部分的に完了したタスクに対する解を提案するために,LLMのこの予測能力を利用するLaGRを紹介した。
論文 参考訳(メタデータ) (2023-08-21T02:07:35Z) - Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM
Inference Pipeline [22.08897444328099]
大規模言語モデル(LLM)はAIの分野に革命をもたらし、様々なタスクで前例のない能力を示している。
本稿では,LLMのパワーを利用する効率的なLLM推論パイプラインを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:36:06Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。