論文の概要: Optimal estimators of cross-partial derivatives and surrogates of functions
- arxiv url: http://arxiv.org/abs/2407.11035v1
- Date: Fri, 5 Jul 2024 03:39:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 12:20:02.558437
- Title: Optimal estimators of cross-partial derivatives and surrogates of functions
- Title(参考訳): 断続微分の最適推定と関数の代理
- Authors: Matieyendou Lamboni,
- Abstract要約: 本稿では、これらの関数をランダム化点$N$で評価することにより、関数のすべての部分的微分のサロゲートを導入する。
NL$モデルランに基づく関連する推定器は、収束の最適な速度に達する。
このような結果は、i)感度指標の主および上界を計算し、i)微分に基づくANOVAシミュレーションにより、シミュレータのエミュレータや関数のサロゲートを導出する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Computing cross-partial derivatives using fewer model runs is relevant in modeling, such as stochastic approximation, derivative-based ANOVA, exploring complex models, and active subspaces. This paper introduces surrogates of all the cross-partial derivatives of functions by evaluating such functions at $N$ randomized points and using a set of $L$ constraints. Randomized points rely on independent, central, and symmetric variables. The associated estimators, based on $NL$ model runs, reach the optimal rates of convergence (i.e., $\mathcal{O}(N^{-1})$), and the biases of our approximations do not suffer from the curse of dimensionality for a wide class of functions. Such results are used for i) computing the main and upper-bounds of sensitivity indices, and ii) deriving emulators of simulators or surrogates of functions thanks to the derivative-based ANOVA. Simulations are presented to show the accuracy of our emulators and estimators of sensitivity indices. The plug-in estimates of indices using the U-statistics of one sample are numerically much stable.
- Abstract(参考訳): より少ないモデル実行を用いた部分微分の計算は、確率近似、微分に基づくANOVA、複雑なモデル探索、アクティブな部分空間などのモデリングに関係している。
本稿では、これらの関数をランダム化点$N$で評価し、制約セット$L$を用いて、関数のすべての部分微分のサロゲートを導入する。
ランダム化点は独立変数、中心変数、対称変数に依存する。
関連する推定子は、$NL$モデルランに基づいて、収束の最適速度(例えば$\mathcal{O}(N^{-1})$)に達する。
このような結果が使われます
一 感度指標の主及び上界の計算及び
二 派生型ANOVAにより、シミュレータのエミュレータ又は関数のサロゲートを導出すること。
感度指標のエミュレータと推定器の精度を示すためにシミュレーションを行った。
1つのサンプルのU統計を用いた指標のプラグイン推定は、数値的に非常に安定である。
関連論文リスト
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Derivatives of Stochastic Gradient Descent [16.90974792716146]
グラディエントDescent (SGD) の反復剤の誘導体の挙動について検討する。
元のSGDの収束によって摂動される異なる目的関数上の不正確なSGDによって駆動されることを示す。
具体的には、定常的なステップサイズでは、これらの導関数は解導関数を中心とするノイズボール内で安定化し、消滅したステップサイズでは$O(log(k)2 / k)$収束率を示すことを示した。
論文 参考訳(メタデータ) (2024-05-24T19:32:48Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees [57.67528738886731]
誘導点に基づくスケーラブルスパース近似の数値安定性について検討する。
地理空間モデリングなどの低次元タスクに対しては,これらの条件を満たす点を自動計算する手法を提案する。
論文 参考訳(メタデータ) (2022-10-14T15:20:17Z) - On Stochastic Moving-Average Estimators for Non-Convex Optimization [105.22760323075008]
本稿では,移動平均(SEMA)問題に基づく広く利用されている推定器のパワーを実証する。
これらすべてのアートな結果に対して、これらのアートな問題に対する結果も提示します。
論文 参考訳(メタデータ) (2021-04-30T08:50:24Z) - Equivalence of Convergence Rates of Posterior Distributions and Bayes
Estimators for Functions and Nonparametric Functionals [4.375582647111708]
非パラメトリック回帰におけるガウス過程の先行したベイズ法の後部収縮率について検討する。
カーネルの一般クラスに対しては、回帰関数とその微分の後方測度の収束率を確立する。
我々の証明は、ある条件下では、ベイズ推定器の任意の収束率に対して、後部分布の同じ収束率に対応することを示す。
論文 参考訳(メタデータ) (2020-11-27T19:11:56Z) - Tight Nonparametric Convergence Rates for Stochastic Gradient Descent
under the Noiseless Linear Model [0.0]
このモデルに基づく最小二乗リスクに対する1パス, 固定段差勾配勾配の収束度を解析した。
特殊な場合として、ランダムなサンプリング点における値のノイズのない観測から単位区間上の実関数を推定するオンラインアルゴリズムを解析する。
論文 参考訳(メタデータ) (2020-06-15T08:25:50Z) - Quadruply Stochastic Gaussian Processes [10.152838128195466]
本稿では,スケーラブルなガウス過程(GP)モデルをトレーニングするための変分推論手法を提案する。この手法は,トレーニング点数,$n$,カーネル近似で使用される数基底関数,$m$のいずれにも依存しない。
GPと関連ベクトルマシンを用いた大規模分類および回帰データセットの精度を,最大で$m = 107$の基底関数で示す。
論文 参考訳(メタデータ) (2020-06-04T17:06:25Z) - On the Estimation of Derivatives Using Plug-in Kernel Ridge Regression
Estimators [4.392844455327199]
非パラメトリック回帰における単純なプラグインカーネルリッジ回帰(KRR)推定器を提案する。
我々は,提案した推定器の挙動を統一的に研究するために,非漸近解析を行う。
提案した推定器は、導関数の任意の順序に対するチューニングパラメータを同じ選択で最適収束率を達成する。
論文 参考訳(メタデータ) (2020-06-02T02:32:39Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
我々は,人口レベルでのアルゴリズムの決定論的収束率と,$n$サンプルに基づく経験的対象に適用した場合の(不安定性)の間の相互作用に基づいて,統計的精度を得るフレームワークを開発する。
本稿では,ガウス混合推定,非線形回帰モデル,情報的非応答モデルなど,いくつかの具体的なモデルに対する一般結果の応用について述べる。
論文 参考訳(メタデータ) (2020-05-22T22:30:52Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。