Deep Learning Activation Functions: Fixed-Shape, Parametric, Adaptive, Stochastic, Miscellaneous, Non-Standard, Ensemble
- URL: http://arxiv.org/abs/2407.11090v1
- Date: Sun, 14 Jul 2024 17:53:49 GMT
- Title: Deep Learning Activation Functions: Fixed-Shape, Parametric, Adaptive, Stochastic, Miscellaneous, Non-Standard, Ensemble
- Authors: M. M. Hammad,
- Abstract summary: Activation functions (AFs) play a pivotal role in the architecture of deep learning models.
This paper presents a comprehensive review of various types of AFs, including fixed-shape, adaptive, non-standard, and ensemble/combining types.
The paper concludes with a comparative evaluation of 12 state-of-the-art AFs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the architecture of deep learning models, inspired by biological neurons, activation functions (AFs) play a pivotal role. They significantly influence the performance of artificial neural networks. By modulating the non-linear properties essential for learning complex patterns, AFs are fundamental in both classification and regression tasks. This paper presents a comprehensive review of various types of AFs, including fixed-shape, parametric, adaptive, stochastic/probabilistic, non-standard, and ensemble/combining types. We begin with a systematic taxonomy and detailed classification frameworks that delineates the principal characteristics of AFs and organizes them based on their structural and functional distinctions. Our in-depth analysis covers primary groups such as sigmoid-based, ReLU-based, and ELU-based AFs, discussing their theoretical foundations, mathematical formulations, and specific benefits and limitations in different contexts. We also highlight key attributes of AFs such as output range, monotonicity, and smoothness. Furthermore, we explore miscellaneous AFs that do not conform to these categories but have shown unique advantages in specialized applications. Non-standard AFs are also explored, showcasing cutting-edge variations that challenge traditional paradigms and offer enhanced adaptability and model performance. We examine strategies for combining multiple AFs to leverage complementary properties. The paper concludes with a comparative evaluation of 12 state-of-the-art AFs, using rigorous statistical and experimental methodologies to assess their efficacy. This analysis not only aids practitioners in selecting and designing the most appropriate AFs for their specific deep learning tasks but also encourages continued innovation in AF development within the machine learning community.
Related papers
- "FRAME: Forward Recursive Adaptive Model Extraction-A Technique for Advance Feature Selection" [0.0]
This study introduces a novel hybrid approach, the Forward Recursive Adaptive Model Extraction Technique (FRAME)
FRAME combines Forward Selection and Recursive Feature Elimination to enhance feature selection across diverse datasets.
The results demonstrate that FRAME consistently delivers superior predictive performance based on downstream machine learning evaluation metrics.
arXiv Detail & Related papers (2025-01-21T08:34:10Z) - High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
We develop a few-shot segmentation (FSS) framework based on foundation models.
To be specific, we propose a simple approach to extract implicit knowledge from foundation models to construct coarse correspondence.
Experiments on two widely used datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-10T08:04:11Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - Optimizing cnn-Bigru performance: Mish activation and comparative analysis with Relu [0.0]
Activation functions (AF) are fundamental components within neural networks, enabling them to capture complex patterns and relationships in the data.
This study illuminates the effectiveness of AF in elevating the performance of intrusion detection systems.
arXiv Detail & Related papers (2024-05-30T21:48:56Z) - Latent Alignment with Deep Set EEG Decoders [44.128689862889715]
We introduce the Latent Alignment method that won the Benchmarks for EEG Transfer Learning competition.
We present its formulation as a deep set applied on the set of trials from a given subject.
Our experimental results show that performing statistical distribution alignment at later stages in a deep learning model is beneficial to the classification accuracy.
arXiv Detail & Related papers (2023-11-29T12:40:45Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
We propose a physics inspired hybrid attention (PIHA) mechanism and the once-for-all (OFA) evaluation protocol to address the issues.
PIHA leverages the high-level semantics of physical information to activate and guide the feature group aware of local semantics of target.
Our method outperforms other state-of-the-art approaches in 12 test scenarios with same ASC parameters.
arXiv Detail & Related papers (2023-09-27T14:39:41Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
This paper introduces Simultaneous Learning, a regularization approach drawing on principles of Transfer Learning and Multi-task Learning.
We leverage auxiliary datasets with the target dataset, the UFOP-HVD, to facilitate simultaneous classification guided by a customized loss function.
Remarkably, our approach demonstrates superior performance over models without regularization.
arXiv Detail & Related papers (2023-05-22T19:44:57Z) - Class-Specific Semantic Reconstruction for Open Set Recognition [101.24781422480406]
Open set recognition enables deep neural networks (DNNs) to identify samples of unknown classes.
We propose a novel method, called Class-Specific Semantic Reconstruction (CSSR), that integrates the power of auto-encoder (AE) and prototype learning.
Results of experiments conducted on multiple datasets show that the proposed method achieves outstanding performance in both close and open set recognition.
arXiv Detail & Related papers (2022-07-05T16:25:34Z) - Domain Adaptive Nuclei Instance Segmentation and Classification via
Category-aware Feature Alignment and Pseudo-labelling [65.40672505658213]
We propose a novel deep neural network, namely Category-Aware feature alignment and Pseudo-Labelling Network (CAPL-Net) for UDA nuclei instance segmentation and classification.
Our approach outperforms state-of-the-art UDA methods with a remarkable margin.
arXiv Detail & Related papers (2022-07-04T07:05:06Z) - Deep Neural Decision Forest for Acoustic Scene Classification [45.886356124352226]
Acoustic scene classification (ASC) aims to classify an audio clip based on the characteristic of the recording environment.
We propose a novel approach for ASC using deep neural decision forest (DNDF)
arXiv Detail & Related papers (2022-03-07T14:39:42Z) - Confounder Identification-free Causal Visual Feature Learning [84.28462256571822]
We propose a novel Confounder Identification-free Causal Visual Feature Learning (CICF) method, which obviates the need for identifying confounders.
CICF models the interventions among different samples based on front-door criterion, and then approximates the global-scope intervening effect upon the instance-level interventions.
We uncover the relation between CICF and the popular meta-learning strategy MAML, and provide an interpretation of why MAML works from the theoretical perspective.
arXiv Detail & Related papers (2021-11-26T10:57:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.