論文の概要: OmniGenome: Aligning RNA Sequences with Secondary Structures in Genomic Foundation Models
- arxiv url: http://arxiv.org/abs/2407.11242v1
- Date: Mon, 15 Jul 2024 21:10:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 19:11:45.567650
- Title: OmniGenome: Aligning RNA Sequences with Secondary Structures in Genomic Foundation Models
- Title(参考訳): OmniGenome:ゲノム基盤モデルにおける二次構造を持つRNA配列の調整
- Authors: Heng Yang, Ke Li,
- Abstract要約: OmniGenomeは、構造コンテキスト化モデリングを使用して二次構造でシーケンスをブリッジする。
その結果、OmniGenomeは複雑なRNAサブタスク上で最先端のパフォーマンスを達成することがわかった。
- 参考スコア(独自算出の注目度): 7.622122513456483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The structures of RNA sequences play a vital role in various cellular processes, while existing genomic foundation models (FMs) have struggled with precise sequence-structure alignment, due to the complexity of exponential combinations of nucleotide bases. In this study, we introduce OmniGenome, a foundation model that addresses this critical challenge of sequence-structure alignment in RNA FMs. OmniGenome bridges the sequences with secondary structures using structure-contextualized modeling, enabling hard in-silico genomic tasks that existing FMs cannot handle, e.g., RNA design tasks. The results on two comprehensive genomic benchmarks show that OmniGenome achieves state-of-the-art performance on complex RNA subtasks. For example, OmniGenome solved 74% of complex puzzles, compared to SpliceBERT which solved only 3% of the puzzles. Besides, OmniGenome solves most of the puzzles within $1$ hour, while the existing methods usually allocate $24$ hours for each puzzle. Overall, OmniGenome establishes wide genomic application cases and offers profound insights into biological mechanisms from the perspective of sequence-structure alignment.
- Abstract(参考訳): RNA配列の構造は、様々な細胞プロセスにおいて重要な役割を担っているが、既存のゲノム基盤モデル(FM)は、ヌクレオチド塩基の指数的結合の複雑さのために、正確な配列構造アライメントに苦慮している。
本研究では,RNA FMにおける配列構造アライメントのこの重要な課題に対処する基礎モデルであるOmniGenomeを紹介する。
OmniGenomeは、構造コンテクスチュアライズドモデリングを使用して二次構造でシーケンスをブリッジし、既存のFMが処理できないハードなサイリコゲノムタスク、例えばRNA設計タスクを可能にする。
2つの総合的なゲノムベンチマークの結果から、OmniGenomeは複雑なRNAサブタスクで最先端のパフォーマンスを達成することが示された。
例えば、OmniGenomeは複雑なパズルの74%を解き、SpliceBERTはパズルの3%しか解けなかった。
さらに、OmniGenomeはパズルのほとんどを1時間以内で解決する。
全体として、OmniGenomeは広範囲のゲノム応用事例を確立し、配列構造アライメントの観点から生物学的メカニズムに関する深い洞察を提供する。
関連論文リスト
- Comprehensive benchmarking of large language models for RNA secondary structure prediction [0.0]
RNA-LLMはRNA配列の大規模なデータセットを使用して、自己教師付き方法で、意味的に豊かな数値ベクトルで各RNA塩基をどう表現するかを学ぶ。
その中で、二次構造を予測することは、RNAの機能的機構を明らかにするための基本的な課題である。
本稿では,いくつかの事前学習されたRNA-LLMの総合的な実験解析を行い,それらを統合されたディープラーニングフレームワークにおけるRNA二次構造予測タスクと比較する。
論文 参考訳(メタデータ) (2024-10-21T17:12:06Z) - DPLM-2: A Multimodal Diffusion Protein Language Model [75.98083311705182]
DPLM-2は, 離散拡散タンパク質言語モデル(DPLM)を拡張し, 配列と構造の両方に適合する多モーダルタンパク質基盤モデルである。
DPLM-2は、配列と構造、およびその限界と条件の結合分布を学習する。
実験によりDPLM-2は高度に互換性のあるアミノ酸配列とそれに対応する3D構造を同時に生成できることが示された。
論文 参考訳(メタデータ) (2024-10-17T17:20:24Z) - RNACG: A Universal RNA Sequence Conditional Generation model based on Flow-Matching [0.0]
本研究では,フローマッチング,すなわちRNACGに基づく普遍的なRNA配列生成モデルを開発する。
RNACGは様々な条件入力に対応でき、可搬性があり、ユーザーは条件入力のために符号化ネットワークをカスタマイズできる。
RNACGは、シーケンス生成およびプロパティ予測タスクに広範な適用性を示す。
論文 参考訳(メタデータ) (2024-07-29T09:46:46Z) - BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
本稿では、最初の包括的なRNAベンチマークBEACON(textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models)を紹介する。
まずBEACONは、構造解析、機能研究、工学的応用を網羅した、これまでの広範囲にわたる研究から導かれた13のタスクから構成される。
第2に、CNNのような従来のアプローチや、言語モデルに基づく高度なRNA基盤モデルなど、さまざまなモデルについて検討し、これらのモデルのタスク固有のパフォーマンスに関する貴重な洞察を提供する。
第3に、重要なRNA言語モデルコンポーネントについて検討する。
論文 参考訳(メタデータ) (2024-06-14T19:39:19Z) - Sequence-Augmented SE(3)-Flow Matching For Conditional Protein Backbone Generation [55.93511121486321]
タンパク質構造生成のための新しいシーケンス条件付きフローマッチングモデルFoldFlow-2を紹介する。
我々は、以前の作業のPDBデータセットよりも桁違いに大きい新しいデータセットでFoldFlow-2を大規模にトレーニングします。
我々はFoldFlow-2が従来のタンパク質構造に基づく生成モデルよりも優れていることを実証的に観察した。
論文 参考訳(メタデータ) (2024-05-30T17:53:50Z) - RNAFlow: RNA Structure & Sequence Design via Inverse Folding-Based Flow Matching [7.600990806121113]
RNAFlowはタンパク質条件のRNA配列構造設計のためのフローマッチングモデルである。
そのデノナイジングネットワークはRNA逆フォールディングモデルと事前訓練されたRosettaFold2NAネットワークを統合し、RNA配列と構造を生成する。
論文 参考訳(メタデータ) (2024-05-29T05:10:25Z) - RDesign: Hierarchical Data-efficient Representation Learning for
Tertiary Structure-based RNA Design [65.41144149958208]
本研究では,データ駆動型RNA設計パイプラインを体系的に構築することを目的とする。
我々は、ベンチマークデータセットを作成し、複雑なRNA第三次構造を表現するための包括的な構造モデリングアプローチを設計した。
RNA設計プロセスを容易にするために,塩基対を持つ抽出二次構造体を事前知識として組み込んだ。
論文 参考訳(メタデータ) (2023-01-25T17:19:49Z) - Accurate RNA 3D structure prediction using a language model-based deep learning approach [50.193512039121984]
RhoFold+はRNA言語モデルに基づくディープラーニング手法で、配列から単一鎖RNAの3次元構造を正確に予測する。
RhoFold+はRNA 3D構造予測のための完全に自動化されたエンドツーエンドパイプラインを提供する。
論文 参考訳(メタデータ) (2022-07-04T17:15:35Z) - RNA Secondary Structure Prediction By Learning Unrolled Algorithms [70.09461537906319]
本稿では,RNA二次構造予測のためのエンド・ツー・エンドのディープラーニングモデルであるE2Efoldを提案する。
E2Efoldの鍵となる考え方は、RNA塩基対行列を直接予測し、制約のないプログラミングを、制約を強制するための深いアーキテクチャのテンプレートとして使うことである。
ベンチマークデータセットに関する包括的な実験により、E2Efoldの優れた性能を実証する。
論文 参考訳(メタデータ) (2020-02-13T23:21:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。