論文の概要: Moment Unfolding
- arxiv url: http://arxiv.org/abs/2407.11284v1
- Date: Mon, 15 Jul 2024 23:45:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 19:02:01.213449
- Title: Moment Unfolding
- Title(参考訳): モーメント・アンフォールディング
- Authors: Krish Desai, Benjamin Nachman, Jesse Thaler,
- Abstract要約: 我々は、まずデータを離散化することなく、観測可能な別の関数として分布モーメントを展開するための新しいアプローチを開発する。
私たちのモーメント・アンフォールディング技術は機械学習を使い、GAN(Generative Adrial Networks)にインスパイアされています。
- 参考スコア(独自算出の注目度): 0.10923877073891446
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deconvolving ("unfolding'') detector distortions is a critical step in the comparison of cross section measurements with theoretical predictions in particle and nuclear physics. However, most existing approaches require histogram binning while many theoretical predictions are at the level of statistical moments. We develop a new approach to directly unfold distribution moments as a function of another observable without having to first discretize the data. Our Moment Unfolding technique uses machine learning and is inspired by Generative Adversarial Networks (GANs). We demonstrate the performance of this approach using jet substructure measurements in collider physics. With this illustrative example, we find that our Moment Unfolding protocol is more precise than bin-based approaches and is as or more precise than completely unbinned methods.
- Abstract(参考訳): デコンボルディング(アンフォールディング')検出器の歪みは、断面積の測定と粒子物理学と核物理学の理論的予測の比較において重要なステップである。
しかし、既存のほとんどのアプローチはヒストグラムの双晶を必要とするが、多くの理論的予測は統計モーメントのレベルにある。
我々は、まずデータを離散化することなく、観測可能な別の関数として分布モーメントを直接展開する新しいアプローチを開発する。
我々のMoment Unfolding技術は機械学習を利用しており、GAN(Generative Adversarial Networks)にインスパイアされている。
本研究では,コライダー物理におけるジェットサブ構造測定を用いて,本手法の性能を実証する。
この例では、Moment Unfoldingプロトコルはbinベースのアプローチよりも正確であり、完全にバイナリ化されたメソッドよりも正確であることがわかった。
関連論文リスト
- von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
結果の確率モデルは、統計物理学における連続スピンモデルと関係を持つ。
後続推論のために、高速マルコフ連鎖モンテカルロサンプリングに寄与するストラトノビッチのような拡張を導入する。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - End-To-End Latent Variational Diffusion Models for Inverse Problems in
High Energy Physics [61.44793171735013]
本稿では,最先端生成技術アプローチの潜時学習とエンドツーエンドの変分フレームワークを組み合わせた,新しい統合アーキテクチャ,潜時変分モデルを提案する。
我々の統一的アプローチは、非最新技術ベースラインの20倍以上の真理への分布自由距離を達成する。
論文 参考訳(メタデータ) (2023-05-17T17:43:10Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Inexact iterative numerical linear algebra for neural network-based
spectral estimation and rare-event prediction [0.0]
遷移作用素の固有関数を導くことは視覚化に有用である。
我々はこれらの固有関数を計算するための不正確な反復線形代数法を開発する。
論文 参考訳(メタデータ) (2023-03-22T13:07:03Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z) - Bayesian inference via sparse Hamiltonian flows [16.393322369105864]
ベイジアンコアセット(Bayesian coreset)は、ベイジアン推論中に全データセットを置き換える、小さな重み付きデータサブセットである。
現在の手法は遅い傾向にあり、コアセットの構築後に二次的な推論ステップが必要であり、データ限界の証拠には限界がない。
これら3つの課題に対処する新しい手法、スパース・ハミルトン流を導入する。
論文 参考訳(メタデータ) (2022-03-11T02:36:59Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
軌道予測のための最近の深層学習手法は有望な性能を示す。
そのようなブラックボックスモデルが実際にどのモデルを予測するために使うのかは、まだ不明である。
本稿では,モデル性能に対する異なるキューの貢献度を定量化する手法を提案する。
論文 参考訳(メタデータ) (2021-10-11T14:24:15Z) - Contrastive learning of strong-mixing continuous-time stochastic
processes [53.82893653745542]
コントラスト学習(Contrastive Learning)は、ラベルのないデータから構築された分類タスクを解決するためにモデルを訓練する自己指導型の手法のファミリーである。
拡散の場合,小~中距離間隔の遷移カーネルを適切に構築したコントラスト学習タスクを用いて推定できることが示される。
論文 参考訳(メタデータ) (2021-03-03T23:06:47Z) - The Boomerang Sampler [4.588028371034406]
本稿では, 連続時間非可逆マルコフ連鎖モンテカルロアルゴリズムの新たなクラスとして, ブーメラン・サンプラーを導入する。
提案手法は実装が容易であることを実証し,既存のベンチマークを断片的決定論的マルコフプロセスより優れていることを示す。
論文 参考訳(メタデータ) (2020-06-24T14:52:22Z) - Detangling robustness in high dimensions: composite versus
model-averaged estimation [11.658462692891355]
ロバスト法は、実際にはユビキタスであるが、正規化推定や高次元の文脈ではまだ完全には理解されていない。
本稿では,これらの設定におけるロバスト性をさらに研究し,予測に焦点を当てたツールボックスを提供する。
論文 参考訳(メタデータ) (2020-06-12T20:40:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。