Cover-separable Fixed Neural Network Steganography via Deep Generative Models
- URL: http://arxiv.org/abs/2407.11405v1
- Date: Tue, 16 Jul 2024 05:47:06 GMT
- Title: Cover-separable Fixed Neural Network Steganography via Deep Generative Models
- Authors: Guobiao Li, Sheng Li, Zhenxing Qian, Xinpeng Zhang,
- Abstract summary: We propose a Cover-separable Fixed Neural Network Steganography, namely Cs-FNNS.
In Cs-FNNS, we propose a Steganographic Perturbation Search (SPS) algorithm to directly encode the secret data into an imperceptible perturbation.
We demonstrate the superior performance of the proposed method in terms of visual quality and undetectability.
- Score: 37.08937194546323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image steganography is the process of hiding secret data in a cover image by subtle perturbation. Recent studies show that it is feasible to use a fixed neural network for data embedding and extraction. Such Fixed Neural Network Steganography (FNNS) demonstrates favorable performance without the need for training networks, making it more practical for real-world applications. However, the stego-images generated by the existing FNNS methods exhibit high distortion, which is prone to be detected by steganalysis tools. To deal with this issue, we propose a Cover-separable Fixed Neural Network Steganography, namely Cs-FNNS. In Cs-FNNS, we propose a Steganographic Perturbation Search (SPS) algorithm to directly encode the secret data into an imperceptible perturbation, which is combined with an AI-generated cover image for transmission. Through accessing the same deep generative models, the receiver could reproduce the cover image using a pre-agreed key, to separate the perturbation in the stego-image for data decoding. such an encoding/decoding strategy focuses on the secret data and eliminates the disturbance of the cover images, hence achieving a better performance. We apply our Cs-FNNS to the steganographic field that hiding secret images within cover images. Through comprehensive experiments, we demonstrate the superior performance of the proposed method in terms of visual quality and undetectability. Moreover, we show the flexibility of our Cs-FNNS in terms of hiding multiple secret images for different receivers.
Related papers
- Securing Fixed Neural Network Steganography [37.08937194546323]
Image steganography is the art of concealing secret information in images in a way that is imperceptible to unauthorized parties.
Recent advances show that is possible to use a fixed neural network (FNN) for secret embedding and extraction.
We propose a key-based FNNS scheme to improve the security of the FNNS.
arXiv Detail & Related papers (2023-09-18T12:07:37Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - CNN-Assisted Steganography -- Integrating Machine Learning with
Established Steganographic Techniques [5.0468312081378475]
We propose a method to improve steganography by increasing the resilience of stego-media to discovery through steganalysis.
Our approach enhances a class of steganographic approaches through the inclusion of a steganographic assistant convolutional neural network (SA-CNN)
Our results show that such steganalyzers are less effective when SA-CNN is employed during the generation of a stego-image.
arXiv Detail & Related papers (2023-04-25T00:19:23Z) - Steganography of Steganographic Networks [23.85364443400414]
Steganography is a technique for covert communication between two parties.
We propose a novel scheme for steganography of steganographic networks in this paper.
arXiv Detail & Related papers (2023-02-28T12:27:34Z) - Signal Processing for Implicit Neural Representations [80.38097216996164]
Implicit Neural Representations (INRs) encode continuous multi-media data via multi-layer perceptrons.
Existing works manipulate such continuous representations via processing on their discretized instance.
We propose an implicit neural signal processing network, dubbed INSP-Net, via differential operators on INR.
arXiv Detail & Related papers (2022-10-17T06:29:07Z) - Hiding Images in Deep Probabilistic Models [58.23127414572098]
We describe a different computational framework to hide images in deep probabilistic models.
Specifically, we use a DNN to model the probability density of cover images, and hide a secret image in one particular location of the learned distribution.
We demonstrate the feasibility of our SinGAN approach in terms of extraction accuracy and model security.
arXiv Detail & Related papers (2022-10-05T13:33:25Z) - Unsupervised Industrial Anomaly Detection via Pattern Generative and Contrastive Networks [6.393288885927437]
We propose Vision Transformer based (VIT) unsupervised anomaly detection network.
It utilizes a hierarchical task learning and human experience to enhance its interpretability.
Our method achieves 99.8% AUC, which surpasses previous state-of-the-art methods.
arXiv Detail & Related papers (2022-07-20T10:09:53Z) - D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization [108.8592577019391]
Image splicing forgery detection is a global binary classification task that distinguishes the tampered and non-tampered regions by image fingerprints.
We propose a novel network called dual-encoder U-Net (D-Unet) for image splicing forgery detection, which employs an unfixed encoder and a fixed encoder.
In an experimental comparison study of D-Unet and state-of-the-art methods, D-Unet outperformed the other methods in image-level and pixel-level detection.
arXiv Detail & Related papers (2020-12-03T10:54:02Z) - Robust Data Hiding Using Inverse Gradient Attention [82.73143630466629]
In the data hiding task, each pixel of cover images should be treated differently since they have divergent tolerabilities.
We propose a novel deep data hiding scheme with Inverse Gradient Attention (IGA), combing the ideas of adversarial learning and attention mechanism.
Empirically, extensive experiments show that the proposed model outperforms the state-of-the-art methods on two prevalent datasets.
arXiv Detail & Related papers (2020-11-21T19:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.