Dynamical Characterization of Quantum Coherence
- URL: http://arxiv.org/abs/2407.11568v3
- Date: Thu, 26 Dec 2024 02:28:56 GMT
- Title: Dynamical Characterization of Quantum Coherence
- Authors: Hai Wang,
- Abstract summary: coherence is rooted in the superposition nature of quantum mechanics.
We show how coherence and Hamiltonians' eigenvalues determine the instantaneous evolution speed.
- Score: 2.7624036517702577
- License:
- Abstract: Quantum coherence, rooted in the superposition nature of quantum mechanics, is one core quantum resource in quantum technologies. Until now, various measures, operational interpretations and generalizations about coherence have been proposed. In recent years, the role of coherence in quantum dynamics and technologies has attracted much attention. In this work, we fully exhibit the effect of coherence in unitary evolutions. Firstly, by introducing the new concept, average quantum distance, we show that for time-independent Hamiltonians, quantum coherence is the average evolution speed and vice versa. Secondly, beyond this average setting, for general cases, we show that how coherence and Hamiltonians' eigenvalues determine the instantaneous evolution speed together, where their trade-off is actually the energy uncertainty. Our results definitely clarify the role coherence playing in quantum systems' dynamics, paving one new way for research about quantum resources in dynamical processes.
Related papers
- Quantum Speed Limit in Terms of Coherence Variations [0.0]
We present an attainable quantum speed limit based on the variation of quantum coherence.
As applications, we study the coherence quantum speed limits of the dephasing and dissipative dynamics.
arXiv Detail & Related papers (2024-10-11T04:30:56Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Quantifying High-Order Interdependencies in Entangled Quantum States [43.70611649100949]
We introduce the Q-information: an information-theoretic measure capable of distinguishing quantum states dominated by synergy or redundancy.
We show that quantum systems need at least four variables to exhibit high-order properties.
Overall, the Q-information sheds light on novel aspects of the internal organisation of quantum systems and their time evolution.
arXiv Detail & Related papers (2023-10-05T17:00:13Z) - Unraveling the Mystery of Quantum Measurement with A New Space-Time Approach to Relativistic Quantum Mechanics [9.116661570248171]
Quantum measurement is a fundamental concept in the field of quantum mechanics.
Despite its significance, four fundamental issues continue to pose significant challenges to the broader application of quantum measurement.
We employ a new space-time approach to relativistic quantum mechanics to address these issues systematically.
arXiv Detail & Related papers (2023-06-01T13:25:08Z) - The singularities of the rate function of quantum coherent work in
one-dimensional transverse field Ising model [0.0]
We specialize our discussions to the one-dimensional transverse field quantum Ising model in the coherent Gibbs state.
We find that quantum coherence not only recovers the quantum phase transition destroyed by thermal fluctuations.
It can be manifested that these singularities are rooted in spin flips causing the sudden change of the domain boundaries of spin polarization.
arXiv Detail & Related papers (2023-03-15T03:17:23Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum correlations in molecules: from quantum resourcing to chemical
bonding [0.0]
The second quantum revolution is all about exploiting the quantum nature of atoms and molecules to execute quantum information processing tasks.
This work establishes a toolbox for systematically exploring, quantifying and dissecting correlation effects in quantum chemical systems.
By utilizing the geometric picture of quantum states we compare -- on a unified basis and in an operationally meaningful way -- total, quantum and classical correlation and entanglement in molecular ground states.
arXiv Detail & Related papers (2022-05-31T15:30:52Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Memory effects in quantum dynamics modelled by quantum renewal processes [0.0]
We focus on quantum non-Markovianity and model the evolution of open quantum systems by quantum renewal processes.
By adopting a trajectory picture for the open quantum system evolution, we analyse how non-Markovianity is influenced by the constituents defining the quantum renewal process.
arXiv Detail & Related papers (2021-06-14T18:27:46Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.