論文の概要: Statistical Reachability Analysis of Stochastic Cyber-Physical Systems under Distribution Shift
- arxiv url: http://arxiv.org/abs/2407.11609v1
- Date: Tue, 16 Jul 2024 11:18:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 15:23:07.421710
- Title: Statistical Reachability Analysis of Stochastic Cyber-Physical Systems under Distribution Shift
- Title(参考訳): 確率的サイバー物理系の分布シフトによる統計的到達性解析
- Authors: Navid Hashemi, Lars Lindemann, Jyotirmoy V. Deshmukh,
- Abstract要約: 到達可能性分析は、サイバー物理システムの安全性を保証する一般的な方法である。
本稿では,力学の記号的記述を持たないSCPSに対して,到達可能性解析を行う際の問題点について検討する。
本稿では,このしきい値よりも小さい確率で,展開中の到達可能な状態がこのセットに存在することを保証する統計的到達可能性解析手法を提案する。
- 参考スコア(独自算出の注目度): 0.061446808540639365
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reachability analysis is a popular method to give safety guarantees for stochastic cyber-physical systems (SCPSs) that takes in a symbolic description of the system dynamics and uses set-propagation methods to compute an overapproximation of the set of reachable states over a bounded time horizon. In this paper, we investigate the problem of performing reachability analysis for an SCPS that does not have a symbolic description of the dynamics, but instead is described using a digital twin model that can be simulated to generate system trajectories. An important challenge is that the simulator implicitly models a probability distribution over the set of trajectories of the SCPS; however, it is typical to have a sim2real gap, i.e., the actual distribution of the trajectories in a deployment setting may be shifted from the distribution assumed by the simulator. We thus propose a statistical reachability analysis technique that, given a user-provided threshold $1-\epsilon$, provides a set that guarantees that any reachable state during deployment lies in this set with probability not smaller than this threshold. Our method is based on three main steps: (1) learning a deterministic surrogate model from sampled trajectories, (2) conducting reachability analysis over the surrogate model, and (3) employing {\em robust conformal inference} using an additional set of sampled trajectories to quantify the surrogate model's distribution shift with respect to the deployed SCPS. To counter conservatism in reachable sets, we propose a novel method to train surrogate models that minimizes a quantile loss term (instead of the usual mean squared loss), and a new method that provides tighter guarantees using conformal inference using a normalized surrogate error. We demonstrate the effectiveness of our technique on various case studies.
- Abstract(参考訳): 到達可能性解析(Reachability analysis)は、確率的サイバー物理システム(SCPS)の安全性を保証するための一般的な手法であり、システムダイナミクスの象徴的な記述を取り入れ、設定プロパゲーション法を用いて、到達可能な状態の集合の過度な近似を境界時間地平線上で計算する。
本稿では,システムトラジェクトリを生成するためにシミュレーション可能なディジタルツインモデルを用いて,力学の記号的記述を持たないSCPSの到達可能性解析を行う問題について検討する。
重要な課題は、シミュレータがSCPSの軌道上の確率分布を暗黙的にモデル化することであるが、一般的にはsim2realギャップがあること、すなわち、配置設定における軌道の実際の分布は、シミュレータが仮定した分布からシフトすることができる。
そこで本稿では,ユーザが提供するしきい値が1-\epsilon$となると,このしきい値よりも小さい確率で,デプロイ中の到達可能な状態がこのセットに存在することを保証できるような統計的到達可能性解析手法を提案する。
提案手法は,(1)サンプル軌道から決定論的サロゲートモデルを学習し,(2)サロゲートモデル上で到達可能性解析を行い,(3)追加のサンプル軌道を用いてサロゲートモデルの分布シフトを定量化する。
到達可能な集合における保守性に対抗するために、量子的損失項を最小化するサロゲートモデルをトレーニングする方法(通常の平均2乗損失の代わりに)と、正規化サロゲート誤差を用いて共形推論を用いてより厳密な保証を提供する新しい手法を提案する。
各種ケーススタディにおいて,本手法の有効性を実証する。
関連論文リスト
- Delta-AI: Local objectives for amortized inference in sparse graphical models [64.5938437823851]
スパース確率的グラフィカルモデル(PGM)における補正推論のための新しいアルゴリズムを提案する。
提案手法は, PGMにおける変数のサンプリングをエージェントが行う一連の行動とみなす場合, エージェントのポリシー学習目的において, PGMの疎結合が局所的な信用割当を可能にするという観察に基づいている。
合成PGMからサンプリングし、スパース因子構造を持つ潜在変数モデルを訓練するための$Delta$-AIの有効性について説明する。
論文 参考訳(メタデータ) (2023-10-03T20:37:03Z) - Distributional Shift-Aware Off-Policy Interval Estimation: A Unified
Error Quantification Framework [8.572441599469597]
本研究では、無限水平マルコフ決定過程の文脈における高信頼オフ政治評価について検討する。
目的は、未知の行動ポリシーから事前に収集されたオフラインデータのみを用いて、対象の政策値に対する信頼区間(CI)を確立することである。
提案アルゴリズムは, 非線形関数近似設定においても, サンプル効率, 誤差ローバスト, 既知収束性を示す。
論文 参考訳(メタデータ) (2023-09-23T06:35:44Z) - Data-Driven Reachability Analysis of Stochastic Dynamical Systems with
Conformal Inference [1.446438366123305]
共形推論を用いた離散時間力学系のデータ駆動型到達可能性解析について考察する。
複雑な閉ループ力学を持つ学習可能な制御系に着目する。
論文 参考訳(メタデータ) (2023-09-17T07:23:01Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
生成モデルを用いた複雑な専門家による実演の行動クローニングに関する理論的枠組みを提案する。
任意の専門的軌跡の時間ごとのステップ分布に一致するトラジェクトリを生成することができることを示す。
論文 参考訳(メタデータ) (2023-07-27T04:27:26Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
マルコフジャンプ線形系に対する制御器の合成法を提案する。
本手法は,MJLSの離散(モードジャンピング)と連続(確率線形)の両方の挙動を捉える有限状態抽象化に基づいている。
本手法を複数の現実的なベンチマーク問題,特に温度制御と航空機の配送問題に適用する。
論文 参考訳(メタデータ) (2022-12-01T17:36:30Z) - Spatially-Varying Bayesian Predictive Synthesis for Flexible and
Interpretable Spatial Prediction [6.07227513262407]
本研究では,空間的ベイズ予測合成と呼ばれる空間的不確かさを捉える手法を提案する。
提案した空間ベイズ予測合成は,標準的な空間モデルや高度な機械学習手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-10T07:16:29Z) - Sampling-Based Robust Control of Autonomous Systems with Non-Gaussian
Noise [59.47042225257565]
雑音分布の明示的な表現に依存しない新しい計画法を提案する。
まず、連続系を離散状態モデルに抽象化し、状態間の確率的遷移によってノイズを捕捉する。
いわゆる区間マルコフ決定過程(iMDP)の遷移確率区間におけるこれらの境界を捉える。
論文 参考訳(メタデータ) (2021-10-25T06:18:55Z) - Rare event estimation using stochastic spectral embedding [0.0]
まれな障害事象の確率を推定することは、エンジニアリングシステムの信頼性評価において重要なステップである。
稀な事象推定問題を効率的に解くためにアルゴリズムを調整した一連の修正を提案する。
論文 参考訳(メタデータ) (2021-06-09T16:10:33Z) - Calibrating Over-Parametrized Simulation Models: A Framework via
Eligibility Set [3.862247454265944]
厳密な頻繁な統計的保証を満たす校正手法を開発するための枠組みを開発する。
本手法は,書籍市場シミュレータのキャリブレーションへの応用を含む,いくつかの数値例で実証する。
論文 参考訳(メタデータ) (2021-05-27T00:59:29Z) - Comparing Probability Distributions with Conditional Transport [63.11403041984197]
新しい発散として条件輸送(CT)を提案し、償却されたCT(ACT)コストと近似します。
ACTは条件付き輸送計画の計算を補正し、計算が容易な非バイアスのサンプル勾配を持つ。
さまざまなベンチマークデータセットのジェネレーティブモデリングでは、既存のジェネレーティブ敵対ネットワークのデフォルトの統計距離をACTに置き換えることで、一貫してパフォーマンスを向上させることが示されています。
論文 参考訳(メタデータ) (2020-12-28T05:14:22Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。