論文の概要: Data-Driven Reachability Analysis of Stochastic Dynamical Systems with
Conformal Inference
- arxiv url: http://arxiv.org/abs/2309.09187v1
- Date: Sun, 17 Sep 2023 07:23:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-19 17:04:00.335054
- Title: Data-Driven Reachability Analysis of Stochastic Dynamical Systems with
Conformal Inference
- Title(参考訳): 共形推論を用いた確率力学系のデータ駆動到達可能性解析
- Authors: Navid Hashemi, Xin Qin, Lars Lindemann, Jyotirmoy V. Deshmukh
- Abstract要約: 共形推論を用いた離散時間力学系のデータ駆動型到達可能性解析について考察する。
複雑な閉ループ力学を持つ学習可能な制御系に着目する。
- 参考スコア(独自算出の注目度): 1.446438366123305
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We consider data-driven reachability analysis of discrete-time stochastic
dynamical systems using conformal inference. We assume that we are not provided
with a symbolic representation of the stochastic system, but instead have
access to a dataset of $K$-step trajectories. The reachability problem is to
construct a probabilistic flowpipe such that the probability that a $K$-step
trajectory can violate the bounds of the flowpipe does not exceed a
user-specified failure probability threshold. The key ideas in this paper are:
(1) to learn a surrogate predictor model from data, (2) to perform reachability
analysis using the surrogate model, and (3) to quantify the surrogate model's
incurred error using conformal inference in order to give probabilistic
reachability guarantees. We focus on learning-enabled control systems with
complex closed-loop dynamics that are difficult to model symbolically, but
where state transition pairs can be queried, e.g., using a simulator. We
demonstrate the applicability of our method on examples from the domain of
learning-enabled cyber-physical systems.
- Abstract(参考訳): 共形推論を用いた離散時間確率力学系のデータ駆動到達可能性解析を考える。
確率システムの象徴的な表現は提供されていないが、代わりに$k$-step のトラジェクタのデータセットにアクセスできると仮定する。
到達可能性の問題は、k$-step の軌道がフローパイプの境界に違反する確率がユーザ指定の故障確率閾値を超えないような確率的フローパイプを構築することである。
本稿では,(1)データからサロゲート予測モデルを学ぶ,(2)サロゲートモデルを用いて到達可能性解析を行う,(3)確率的到達可能性を保証するために共形推論を用いてサロゲートモデルの帰結誤差を定量化する,というアイデアを提案する。
記号的にモデル化が難しい複雑な閉ループダイナミクスを持つ学習可能な制御系に注目するが,例えばシミュレータを用いて状態遷移ペアを問い合わせることができる。
本稿では,学習可能なサイバー物理システムの事例から,本手法の適用性を示す。
関連論文リスト
- Statistical Reachability Analysis of Stochastic Cyber-Physical Systems under Distribution Shift [0.061446808540639365]
到達可能性分析は、サイバー物理システムの安全性を保証する一般的な方法である。
本稿では,力学の記号的記述を持たないSCPSに対して,到達可能性解析を行う際の問題点について検討する。
本稿では,このしきい値よりも小さい確率で,展開中の到達可能な状態がこのセットに存在することを保証する統計的到達可能性解析手法を提案する。
論文 参考訳(メタデータ) (2024-07-16T11:18:41Z) - Logistic-beta processes for dependent random probabilities with beta marginals [58.91121576998588]
本稿では,ロジスティック・ベータプロセスと呼ばれる新しいプロセスを提案する。
空間や時間などの離散領域と連続領域の両方への依存をモデル化でき、相関カーネルを通じて柔軟な依存構造を持つ。
本研究は,非パラメトリック二分回帰と条件密度推定の例による効果をシミュレーション研究と妊娠結果応用の両方で説明する。
論文 参考訳(メタデータ) (2024-02-10T21:41:32Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
拡散モデルを用いて予測を行い,カオス力学系に対する不確かさの定量化が可能であることを示す。
本研究では,雑音レベルが低下するにつれて真の分布に収束する条件付きスコア関数の確率的近似法を開発する。
推論時に非線形ユーザ定義イベントを条件付きでサンプリングすることができ、分布の尾部からサンプリングした場合でもデータ統計と一致させることができる。
論文 参考訳(メタデータ) (2023-06-13T03:42:03Z) - MAntRA: A framework for model agnostic reliability analysis [0.0]
時間依存型信頼性解析のための新しいモデルデータ駆動型信頼性解析フレームワークを提案する。
提案手法は、解釈可能な機械学習、ベイズ統計、動的方程式の同定を組み合わせたものである。
以上の結果から,提案手法の信頼性評価への応用の可能性が示唆された。
論文 参考訳(メタデータ) (2022-12-13T00:57:09Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
マルコフジャンプ線形系に対する制御器の合成法を提案する。
本手法は,MJLSの離散(モードジャンピング)と連続(確率線形)の両方の挙動を捉える有限状態抽象化に基づいている。
本手法を複数の現実的なベンチマーク問題,特に温度制御と航空機の配送問題に適用する。
論文 参考訳(メタデータ) (2022-12-01T17:36:30Z) - Variational Hierarchical Mixtures for Probabilistic Learning of Inverse
Dynamics [20.953728061894044]
適切に校正された確率回帰モデルは、データセットが急速に成長し、タスクがより複雑になるにつれて、ロボットアプリケーションにおいて重要な学習要素である。
計算効率のよい表現と計算複雑性の正規化を両世界の利点と組み合わせた確率論的階層的モデリングパラダイムを考察する。
これらの表現を学習するための2つの効率的な変分推論手法を導出し、階層的無限局所回帰モデルの利点を強調する。
論文 参考訳(メタデータ) (2022-11-02T13:54:07Z) - Uncertainty quantification in a mechanical submodel driven by a
Wasserstein-GAN [0.0]
本稿では,機械学習やデータ駆動手法における非線形手法の利用が重要であることを示す。
このような応用にはGAN(Generative Adversarial Networks)が適しており、Wasserstein-GANには勾配ペナルティのバリエーションがある。
論文 参考訳(メタデータ) (2021-10-26T13:18:06Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z) - Data-Driven Verification under Signal Temporal Logic Constraints [0.0]
力学が部分的に不明な不確実性のあるシステムを考える。
本研究の目的は,そのようなシステムの軌道による時間論理特性の満足度について研究することである。
本研究では, ベイズ推定手法を用いて, 信頼度と満足度を関連づける。
論文 参考訳(メタデータ) (2020-05-08T08:32:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。