論文の概要: Rare event estimation using stochastic spectral embedding
- arxiv url: http://arxiv.org/abs/2106.05824v1
- Date: Wed, 9 Jun 2021 16:10:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-11 14:28:01.857156
- Title: Rare event estimation using stochastic spectral embedding
- Title(参考訳): 確率スペクトル埋め込みを用いた希少事象推定
- Authors: P.-R. Wagner, S. Marelli, I. Papaioannou, D. Straub, B. Sudret
- Abstract要約: まれな障害事象の確率を推定することは、エンジニアリングシステムの信頼性評価において重要なステップである。
稀な事象推定問題を効率的に解くためにアルゴリズムを調整した一連の修正を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating the probability of rare failure events is an essential step in the
reliability assessment of engineering systems. Computing this failure
probability for complex non-linear systems is challenging, and has recently
spurred the development of active-learning reliability methods. These methods
approximate the limit-state function (LSF) using surrogate models trained with
a sequentially enriched set of model evaluations. A recently proposed method
called stochastic spectral embedding (SSE) aims to improve the local
approximation accuracy of global, spectral surrogate modelling techniques by
sequentially embedding local residual expansions in subdomains of the input
space. In this work we apply SSE to the LSF, giving rise to a stochastic
spectral embedding-based reliability (SSER) method. The resulting partition of
the input space decomposes the failure probability into a set of
easy-to-compute domain-wise failure probabilities. We propose a set of
modifications that tailor the algorithm to efficiently solve rare event
estimation problems. These modifications include specialized refinement domain
selection, partitioning and enrichment strategies. We showcase the algorithm
performance on four benchmark problems of various dimensionality and complexity
in the LSF.
- Abstract(参考訳): まれな障害の発生確率を推定することは、エンジニアリングシステムの信頼性評価において不可欠なステップである。
複雑な非線形システムに対するこの障害確率の計算は困難であり、最近アクティブラーニング信頼性手法の開発が進められている。
これらの手法は、逐次強化されたモデル評価のセットで訓練されたサロゲートモデルを用いて極限状態関数(lsf)を近似する。
確率スペクトル埋め込み(SSE)と呼ばれる最近提案された手法は、入力空間のサブドメインに局所的残留展開を逐次埋め込むことにより、グローバルスペクトル代理モデリング技術の局所近似精度を向上させることを目的としている。
本研究では,SSE を LSF に適用し,確率スペクトル埋め込み型信頼性 (SSER) 法を導出する。
入力空間の結果として生じる分割は、障害確率を計算し易い領域の障害確率の集合に分解する。
稀な事象推定問題を効率的に解くためにアルゴリズムを調整した一連の修正を提案する。
これらの変更には、特別な洗練されたドメインの選択、分割、強化戦略が含まれる。
LSFにおける様々な次元と複雑さの4つのベンチマーク問題に対して,アルゴリズムの性能を示す。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning [50.84938730450622]
数理推論におけるOOD検出にトラジェクトリボラティリティを用いたトラジェクトリベースのTVスコアを提案する。
本手法は, 数学的推論シナリオ下でのGLM上での従来のアルゴリズムよりも優れる。
提案手法は,複数選択質問などの出力空間における高密度特徴を持つアプリケーションに拡張することができる。
論文 参考訳(メタデータ) (2024-05-22T22:22:25Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
一般的に用いられる有限差分法に代わる方法を提案する。
我々は,これらの手法を実問題と類似した問題に適用可能であること,および方程式発見アルゴリズムの収束性を確保する能力の観点から評価する。
論文 参考訳(メタデータ) (2023-11-09T23:32:06Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Bayesian Safety Validation for Failure Probability Estimation of Black-Box Systems [34.61865848439637]
失敗の確率を推定することは、安全クリティカルなシステムの認証において重要なステップである。
この研究は、ベイズ最適化問題としてブラックボックス安全性検証の問題を補足する。
このアルゴリズムは、障害を探索し、最もよく似た障害を計算し、オペレーティングシステム上での障害確率を推定するように設計されている。
論文 参考訳(メタデータ) (2023-05-03T22:22:48Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
目的と決定論的等式制約による非線形最適化問題を解くために,逐次2次プログラミングアルゴリズム(TR-StoSQP)を提案する。
アルゴリズムは信頼領域半径を適応的に選択し、既存の直線探索StoSQP方式と比較して不確定なヘッセン行列を利用することができる。
論文 参考訳(メタデータ) (2022-11-29T05:52:17Z) - A Deep Reinforcement Learning Approach to Rare Event Estimation [30.670114229970526]
自律システムの設計における重要なステップは、失敗が起こる確率を評価することである。
安全クリティカルな領域では、モンテカルロサンプリングによる政策の評価が非効率であるように、失敗確率は非常に小さい。
逐次意思決定システムにおいて、稀な事象の確率を効率的に推定できる2つの適応的重要度サンプリングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-11-22T18:29:14Z) - Reliability analysis of discrete-state performance functions via
adaptive sequential sampling with detection of failure surfaces [0.0]
本稿では,レアイベント確率推定のための新しい効率的でロバストな手法を提案する。
この手法は、複数の障害タイプの確率を推定することができる。
この情報に対応して、推定確率の精度を高めることができる。
論文 参考訳(メタデータ) (2022-08-04T05:59:25Z) - Entropy-based adaptive design for contour finding and estimating
reliability [0.24466725954625884]
信頼性解析において、故障確率を推定するために用いられる手法は、しばしばモデル評価に関連するコストによって制限される。
本稿では,MFISと組み合わせることで,より正確な故障確率推定を行うエントロピーに基づくGP適応設計を提案する。
ベンチマークデータに加え、NASA(NASA)宇宙服の衝撃損傷シミュレーターへの応用例も紹介されている。
論文 参考訳(メタデータ) (2021-05-24T15:41:15Z) - Variance based sensitivity analysis for Monte Carlo and importance
sampling reliability assessment with Gaussian processes [0.0]
本稿では,2つの不確実性源に対する故障推定器の感度を定量的に評価する手法を提案する。
この分析により、故障確率推定に関連する全誤差を制御でき、推定の精度基準を提供する。
本手法は, モンテカルロ法と重要サンプリング法の両方で提案され, 希少事象確率の推定を改善することを目的としている。
論文 参考訳(メタデータ) (2020-11-30T17:06:28Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。