Quantum annealer accelerates the variational quantum eigensolver in a triple-hybrid algorithm
- URL: http://arxiv.org/abs/2407.11818v1
- Date: Tue, 16 Jul 2024 15:07:21 GMT
- Title: Quantum annealer accelerates the variational quantum eigensolver in a triple-hybrid algorithm
- Authors: Manpreet Singh Jattana,
- Abstract summary: A novel triple-hybrid algorithm combines the effective use of a classical computer, a gate-based quantum computer, and a quantum annealer.
The solution of a graph coloring problem found using a quantum annealer reduces the resources needed to accelerate VQE.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hybrid algorithms that combine quantum and classical resources have become commonplace in quantum computing. The variational quantum eigensolver (VQE) is routinely used to solve prototype problems. Currently, hybrid algorithms use no more than one kind of quantum computer connected to a classical computer. In this work, a novel triple-hybrid algorithm combines the effective use of a classical computer, a gate-based quantum computer, and a quantum annealer. The solution of a graph coloring problem found using a quantum annealer reduces the resources needed from a gate-based quantum computer to accelerate VQE by allowing simultaneous measurements within commuting groups of Pauli operators. We experimentally validate our algorithm by evaluating the ground state energy of H$_2$ using different IBM Q devices and the DWave Advantage system requiring only half the resources of standard VQE. Other larger problems we consider exhibit even more significant VQE acceleration. Several examples of algorithms are provided to further motivate a new field of multi-hybrid algorithms that leverage different kinds of quantum computers to gain performance improvements.
Related papers
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Trainable Variational Quantum-Multiblock ADMM Algorithm for Generation
Scheduling [0.0]
This paper proposes a two-loop quantum solution algorithm for generation scheduling by quantum computing, machine learning, and distributed optimization.
The aim is to facilitate noisy employing near-term quantum machines with a limited number of qubits to solve practical power system problems.
arXiv Detail & Related papers (2023-03-28T21:31:39Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Hybrid Quantum Classical Simulations [0.0]
We report on two major hybrid applications of quantum computing, namely, the quantum approximate optimisation algorithm (QAOA) and the variational quantum eigensolver (VQE)
Both are hybrid quantum classical algorithms as they require incremental communication between a classical central processing unit and a quantum processing unit to solve a problem.
arXiv Detail & Related papers (2022-10-06T10:49:15Z) - Multiple Query Optimization using a Hybrid Approach of Classical and
Quantum Computing [1.7077661158850292]
We tackle the multiple query optimization problem (MQO) which is an important NP-hard problem in the area of data-intensive problems.
We propose a novel hybrid classical-quantum algorithm to solve the MQO on a gate-based quantum computer.
Our algorithm shows a qubit efficiency of close to 99% which is almost a factor of 2 higher compared to the state of the art implementation.
arXiv Detail & Related papers (2021-07-22T08:12:49Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Fast-Forwarding with NISQ Processors without Feedback Loop [0.0]
We present the Classical Quantum Fast Forwarding (CQFF) as an alternative diagonalisation based algorithm for quantum simulation.
CQFF removes the need for a classical-quantum feedback loop and controlled multi-qubit unitaries.
Our work provides a $104$ improvement over the previous record.
arXiv Detail & Related papers (2021-04-05T14:29:33Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.