論文の概要: "It depends": Configuring AI to Improve Clinical Usefulness Across Contexts
- arxiv url: http://arxiv.org/abs/2407.11978v1
- Date: Mon, 27 May 2024 11:49:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 11:50:18.590122
- Title: "It depends": Configuring AI to Improve Clinical Usefulness Across Contexts
- Title(参考訳): 「それ次第」:コンテキスト横断の臨床的有用性を改善するためにAIを設定する
- Authors: Hubert D. Zając, Jorge M. N. Ribeiro, Silvia Ingala, Simona Gentile, Ruth Wanjohi, Samuel N. Gitau, Jonathan F. Carlsen, Michael B. Nielsen, Tariq O. Andersen,
- Abstract要約: 本稿では、異なる文脈における臨床的有用性のためにAIを設計する方法を考察する。
デンマークとケニアの7つの臨床施設の放射線技師13名を対象に,19回のデザインセッションを行った。
我々は,意図した臨床状況に合わせて設定しなければならない4つの技術的側面を概念化した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Artificial Intelligence (AI) repeatedly match or outperform radiologists in lab experiments. However, real-world implementations of radiological AI-based systems are found to provide little to no clinical value. This paper explores how to design AI for clinical usefulness in different contexts. We conducted 19 design sessions and design interventions with 13 radiologists from 7 clinical sites in Denmark and Kenya, based on three iterations of a functional AI-based prototype. Ten sociotechnical dependencies were identified as crucial for the design of AI in radiology. We conceptualised four technical dimensions that must be configured to the intended clinical context of use: AI functionality, AI medical focus, AI decision threshold, and AI Explainability. We present four design recommendations on how to address dependencies pertaining to the medical knowledge, clinic type, user expertise level, patient context, and user situation that condition the configuration of these technical dimensions.
- Abstract(参考訳): 人工知能(AI)は、実験室で放射線学者と繰り返し一致または成績が良くなる。
しかし、放射能AIベースのシステムの現実的な実装は、臨床的な価値をほとんど、あるいは全く提供しない。
本稿では、異なる文脈における臨床的有用性のためにAIを設計する方法を考察する。
デンマークとケニアの7つの臨床施設の放射線技師13人と,機能AIベースのプロトタイプの3つのイテレーションに基づいて,19回のデザインセッションと設計介入を行った。
放射線学におけるAIの設計には10の社会技術的依存関係が不可欠であると認識された。
我々は、AI機能、AI医療焦点、AI決定しきい値、AI説明可能性という、意図された臨床コンテキストに設定する必要がある4つの技術的側面を概念化した。
本報告では, 医療知識, 診療タイプ, ユーザ専門レベル, 患者コンテキスト, およびこれらの技術領域の構成を条件としたユーザ状況に関する依存関係への対処方法について, 設計勧告を4回提示する。
関連論文リスト
- FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare [73.78776682247187]
医療AIに関連する技術的、臨床的、倫理的、法的リスクに関する懸念が高まっている。
この研究は、Future-AIガイドラインを、医療における信頼できるAIツールの開発とデプロイを導くための最初の国際コンセンサスフレームワークとして説明している。
論文 参考訳(メタデータ) (2023-08-11T10:49:05Z) - HEAR4Health: A blueprint for making computer audition a staple of modern
healthcare [89.8799665638295]
近年、従来の医療システムを変革する試みとして、デジタル医療の研究が急速に増加している。
コンピュータによるオーディションは、少なくとも商業的関心の面では遅れている。
実生活における聴覚信号の分析に必要な基礎技術に対応する聴覚、計算とデータ効率の進歩、個々の差異を考慮し、医療データの長手性を扱う聴覚。
論文 参考訳(メタデータ) (2023-01-25T09:25:08Z) - Current State of Community-Driven Radiological AI Deployment in Medical
Imaging [1.474525456020066]
本報告は, MonAIコンソーシアムの業界専門家と臨床医のグループによる, 週ごとの議論と問題解決経験について述べる。
実験室におけるAIモデル開発とその後の臨床展開の障壁を明らかにする。
臨床放射線学ワークフローにおける様々なAI統合ポイントについて論じる。
論文 参考訳(メタデータ) (2022-12-29T05:17:59Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Routine Usage of AI-based Chest X-ray Reading Support in a Multi-site
Medical Supply Center [64.91941409801494]
チェストX線画像の評価のための市販のAIソリューションは、複雑な環境で、放射線医や臨床研究員の24/7を支援することができる。
本システムは, 放射線技師や臨床同僚が重要な決定を下す上で, 利用者によらず, 医療機関や病院で, 画像データを作成するX線システムタイプによらず, 堅牢に機能する。
論文 参考訳(メタデータ) (2022-10-17T08:06:16Z) - Who Goes First? Influences of Human-AI Workflow on Decision Making in
Clinical Imaging [24.911186503082465]
本研究は, 放射線医学における診断セッション開始時と, 放射線科医の仮決定後のAI支援の効果について検討した。
その結果、AI推論をレビューする前に仮回答を登録するよう求められている参加者は、アドバイスが正確かどうかに関わらず、AIに同意する確率が低く、AIと意見の相違がある場合には、同僚の第二の意見を求める確率が低いことがわかった。
論文 参考訳(メタデータ) (2022-05-19T16:59:25Z) - Evaluating Explainable AI on a Multi-Modal Medical Imaging Task: Can
Existing Algorithms Fulfill Clinical Requirements? [42.75635888823057]
Heatmapは、AIモデルの予測の重要な特徴を強調する、説明の一形態である。
マルチモーダルな医用画像の意思決定において,ヒートマップがどの程度優れているかは分かっていない。
本稿では,この臨床的に重要であるが技術的に無視される問題に対処するために,MSFI(Modality-specific feature importance)尺度を提案する。
論文 参考訳(メタデータ) (2022-03-12T17:18:16Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridgeは、臨床医の意思決定ワークフローに機械学習の説明をシームレスに組み込むビジュアル分析ツールである。
我々は,臨床医がMLの特徴に慣れていないこと,文脈情報の欠如,コホートレベルの証拠の必要性など,3つの重要な課題を特定した。
症例スタディと専門医4名のインタビューを通じて, VBridgeの有効性を実証した。
論文 参考訳(メタデータ) (2021-08-04T17:34:13Z) - Explainable AI For COVID-19 CT Classifiers: An Initial Comparison Study [3.4031539425106683]
説明可能なAI(XAI)は、AIとディープラーニングのためのブラックボックスのアンロックの鍵です。
胸部ctは、covid-19に関連する肺疾患の診断および治療管理に有用なツールである。
本研究の目的は、比較調査による新型コロナウイルス分類モデルのためのXAI戦略の提案と開発である。
論文 参考訳(メタデータ) (2021-04-25T23:39:14Z) - Artificial Intelligence-based Clinical Decision Support for COVID-19 --
Where Art Thou? [19.068540069452347]
我々は,AIに基づく臨床意思決定支援システムの機会と要件を同定する。
急激なヘルスケアの課題に対する"AIの準備"に影響を与える課題を強調します。
論文 参考訳(メタデータ) (2020-06-05T13:34:47Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
新型コロナウイルス感染症(COVID-19)のパンデミックは世界中に広がっている。
X線やCT(Computerd Tomography)などの医用画像は、世界的な新型コロナウイルス対策に欠かせない役割を担っている。
最近登場した人工知能(AI)技術は、画像ツールの力を強化し、医療専門家を支援する。
論文 参考訳(メタデータ) (2020-04-06T15:21:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。